Menu Close

solve-y-xy-0-by-using-integr-series-




Question Number 57925 by maxmathsup by imad last updated on 14/Apr/19
solve y^(′′)  −xy =0  by using integr series.
solveyxy=0byusingintegrseries.
Commented by maxmathsup by imad last updated on 18/Apr/19
let search develloppable at integr serie  let y =Σ_(n=0) ^∞  a_n x^n  ⇒  y^′ (x) =Σ_(n=1) ^∞  na_n x^(n−1)   and y^(′′) (x) =Σ_(n=2) ^∞  n(n−1)a_n x^(n−2)   (e) ⇒Σ_(n=2) ^∞  n(n−1)a_n x^(n−2)  −Σ_(n=0) ^∞  a_n x^(n+1)  =0 ⇒  Σ_(p=0) ^∞  (p+2)(p+1)a_(p+2)  x^p  −Σ_(p=1) ^∞  a_(p−1) x^p  =0 ⇒2a_2  +Σ_(p=1) ^∞ { (p+1)(p+2)a_(p+2) −a_(p−1) }x^p =0  ⇒a_2 =0   and  (p+1)(p+2)a_(p+2) −a_(p−1) =0   ∀ p≥1 ⇒a_(p+2) =(a_(p−1) /((p+1)(p+2)))  ∀p≥1  and a_2 =0 ⇒a_(2n+2) =(a_(2n−1) /((2n+1)(2n+2)))  and  a_(2n+3)  =(a_(2n) /((2n+2)(2n+3)))  y(x) =Σ_(n=0) ^∞  a_n x^n   = Σ_(n=0) ^∞  a_(2n) x^(2n)  +Σ_(n=0) ^∞  a_(2n+1) x^(2n+1)   =Σ_(n=2) ^∞    (a_(2n−3) /((2n−1)(2n+1))) x^(2n)   +a_0   +Σ_(n=1) ^∞    (a_(2n−2) /(2n(2n+1))) x^(2n+1)   also we can use that   (a_(2n+2) /a_(2n−1) ) =(1/((2n+1)(2n+2)))  ...be continued...
letsearchdevelloppableatintegrserielety=n=0anxny(x)=n=1nanxn1andy(x)=n=2n(n1)anxn2(e)n=2n(n1)anxn2n=0anxn+1=0p=0(p+2)(p+1)ap+2xpp=1ap1xp=02a2+p=1{(p+1)(p+2)ap+2ap1}xp=0a2=0and(p+1)(p+2)ap+2ap1=0p1ap+2=ap1(p+1)(p+2)p1anda2=0a2n+2=a2n1(2n+1)(2n+2)anda2n+3=a2n(2n+2)(2n+3)y(x)=n=0anxn=n=0a2nx2n+n=0a2n+1x2n+1=n=2a2n3(2n1)(2n+1)x2n+a0+n=1a2n22n(2n+1)x2n+1alsowecanusethata2n+2a2n1=1(2n+1)(2n+2)becontinued
Answered by 121194 last updated on 14/Apr/19
y=Σ_(i=0) ^∞ a_i x^i   y′=Σ_(i=0) ^∞ a_i ix^(i−1) =Σ_(i=−1) ^∞ a_(i+1) (i+1)x^i =Σ_(i=0) ^∞ a_(i+1) (i+1)x^i   y′′=Σ_(i=0) ^∞ a_i i(i−1)x^(i−2) =Σ_(i=−2) ^∞ a_(i+2) (i+2)(i+1)x^i =Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i   y′′−xy=0  Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i −xΣ_(i=0) ^∞ a_i x^i =0  Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i −Σ_(i=0) ^∞ a_i x^(i+1) =0  Σ_(i=0) ^∞ a_(i+2) (i+2)(i+1)x^i −Σ_(i=1) ^∞ a_(i−1) x^i =0  2a_2 =0⇒a_2 =0  (i+2)(i+1)a_(i+2) −a_(i−1) =0;i>0  a_(i+2) =(a_(i−1) /((i+2)(i+1)));i>0  a_i =(a_(i−3) /(i(i−1)));i>2  a_0 =c_1   a_1 =c_2   a_2 =0  a_3 =(a_0 /6)=(c_1 /6)  a_4 =(a_1 /(12))=(c_2 /(12))  a_5 =(a_2 /(20))=0  a_6 =(a_3 /(30))=(c_1 /(180))  ...  y=Σ_(i=0) ^∞ a_i x^i   =Σ_(i=0) ^∞ a_(3i) x^(3i) +Σ_(i=0) ^∞ a_(3i+1) x^(3i+1) +Σ_(i=0) ^∞ a_(3i+2) x^(3i+2)   =c_1 Σ_(i=0) ^∞ (x^(3i) /(f(i)))+c_2 Σ_(i=0) ^∞ (x^(3i+1) /(g(i)))  f(i)= { (1,(i=0)),(((f(i−1))/(3i(3i−1))),(i>0)) :}  g(i)= { (1,(i=0)),(((f(i−1))/(3i(3i+1))),(i>0)) :}
y=i=0aixiy=i=0aiixi1=i=1ai+1(i+1)xi=i=0ai+1(i+1)xiy=i=0aii(i1)xi2=i=2ai+2(i+2)(i+1)xi=i=0ai+2(i+2)(i+1)xiyxy=0i=0ai+2(i+2)(i+1)xixi=0aixi=0i=0ai+2(i+2)(i+1)xii=0aixi+1=0i=0ai+2(i+2)(i+1)xii=1ai1xi=02a2=0a2=0(i+2)(i+1)ai+2ai1=0;i>0ai+2=ai1(i+2)(i+1);i>0ai=ai3i(i1);i>2a0=c1a1=c2a2=0a3=a06=c16a4=a112=c212a5=a220=0a6=a330=c1180y=i=0aixi=i=0a3ix3i+i=0a3i+1x3i+1+i=0a3i+2x3i+2=c1i=0x3if(i)+c2i=0x3i+1g(i)f(i)={1i=0f(i1)3i(3i1)i>0g(i)={1i=0f(i1)3i(3i+1)i>0

Leave a Reply

Your email address will not be published. Required fields are marked *