solve-y-xy-0-by-using-integr-series- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 57925 by maxmathsup by imad last updated on 14/Apr/19 solvey″−xy=0byusingintegrseries. Commented by maxmathsup by imad last updated on 18/Apr/19 letsearchdevelloppableatintegrserielety=∑n=0∞anxn⇒y′(x)=∑n=1∞nanxn−1andy″(x)=∑n=2∞n(n−1)anxn−2(e)⇒∑n=2∞n(n−1)anxn−2−∑n=0∞anxn+1=0⇒∑p=0∞(p+2)(p+1)ap+2xp−∑p=1∞ap−1xp=0⇒2a2+∑p=1∞{(p+1)(p+2)ap+2−ap−1}xp=0⇒a2=0and(p+1)(p+2)ap+2−ap−1=0∀p⩾1⇒ap+2=ap−1(p+1)(p+2)∀p⩾1anda2=0⇒a2n+2=a2n−1(2n+1)(2n+2)anda2n+3=a2n(2n+2)(2n+3)y(x)=∑n=0∞anxn=∑n=0∞a2nx2n+∑n=0∞a2n+1x2n+1=∑n=2∞a2n−3(2n−1)(2n+1)x2n+a0+∑n=1∞a2n−22n(2n+1)x2n+1alsowecanusethata2n+2a2n−1=1(2n+1)(2n+2)…becontinued… Answered by 121194 last updated on 14/Apr/19 y=∑∞i=0aixiy′=∑∞i=0aiixi−1=∑∞i=−1ai+1(i+1)xi=∑∞i=0ai+1(i+1)xiy″=∑∞i=0aii(i−1)xi−2=∑∞i=−2ai+2(i+2)(i+1)xi=∑∞i=0ai+2(i+2)(i+1)xiy″−xy=0∑∞i=0ai+2(i+2)(i+1)xi−x∑∞i=0aixi=0∑∞i=0ai+2(i+2)(i+1)xi−∑∞i=0aixi+1=0∑∞i=0ai+2(i+2)(i+1)xi−∑∞i=1ai−1xi=02a2=0⇒a2=0(i+2)(i+1)ai+2−ai−1=0;i>0ai+2=ai−1(i+2)(i+1);i>0ai=ai−3i(i−1);i>2a0=c1a1=c2a2=0a3=a06=c16a4=a112=c212a5=a220=0a6=a330=c1180…y=∑∞i=0aixi=∑∞i=0a3ix3i+∑∞i=0a3i+1x3i+1+∑∞i=0a3i+2x3i+2=c1∑∞i=0x3if(i)+c2∑∞i=0x3i+1g(i)f(i)={1i=0f(i−1)3i(3i−1)i>0g(i)={1i=0f(i−1)3i(3i+1)i>0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-123461Next Next post: sinh-1-1-sinh-1-1-2-2-sinh-1-1-3-2-sinh-1-1-4-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.