Menu Close

solve-y-y-sinx-x-




Question Number 96773 by abdomathmax last updated on 04/Jun/20
solve y^(′′) −y =((sinx)/x)
solveyy=sinxx
Answered by abdomathmax last updated on 05/Jun/20
let solve by laplace   (e)⇒L(y^(′′) )−L(y) =L(((sinx)/x)) ⇒  x^2 L(y)−xy(0)−y^′ (0) −L(y) =L(((sinx)/x)) ⇒  (x^2 −1)L(y) =xy(0)+y^′ (0)+L(((sinx)/x))  we have L(((sinx)/x)) =∫_0 ^∞ ((sint)/t) e^(−xt)  dt =f(x)  f^′ (x) =−∫_0 ^∞  sint e^(−xt)  dt =−Im(∫_0 ^∞ e^(it−xt) dt)  ∫_0 ^∞  e^((−x+i)t)  dt =[(1/(−x+i)) e^((−x+i)t) ]_0 ^∞   =−(1/(−x+i)) =(1/(x−i)) =((x+i)/(x^2 +1)) ⇒f^′ (x) =−(1/(1+x^2 )) ⇒  f(x)=−arrctanx +c  f(0) =(π/2) =0+c ⇒f(x) =(π/2) −arcrtanx  e ⇒(x^2 −1)L(y) =xy(0)+y^′ (0)+(π/2)−arctanx  ⇒L(y) =y(0)(x/(x^2 −1)) +((y^′ (0)+(π/2))/(x^2 −1))−((arctanx)/(x^2 −1))  y(x) =y(0)L^(−1) ((x/(x^2 −1)))+(y^′ (0)+(π/2))L^(−1) ((1/(x^2 −1)))  −L^(−1) (((arctanx)/(x^2 −1)))  (x/(x^2 −1)) =(x/((x−1)(x+1))) =(a/(x−1)) +(b/(x+1)) ⇒  a =(1/2) and b =(1/2) ⇒L^(−1) ((x/(x^2 −1)))  =(1/2)e^x  +(1/2)e^(−x)  =ch(x)  (1/(x^2 −1)) =(1/2)((1/(x−1))−(1/(x+1))) ⇒  L^(−1) ((1/(x^2 −1))) =(e^x /2)−(e^(−x) /2) =sh(x) rest to find  L^(−1) (((arctanx)/(x^2 −1)))=δ(x) ⇒  y(x) =y(o)ch(x)+(y^′ (0)+(π/2))shx +δ(x)
letsolvebylaplace(e)L(y)L(y)=L(sinxx)x2L(y)xy(0)y(0)L(y)=L(sinxx)(x21)L(y)=xy(0)+y(0)+L(sinxx)wehaveL(sinxx)=0sinttextdt=f(x)f(x)=0sintextdt=Im(0eitxtdt)0e(x+i)tdt=[1x+ie(x+i)t]0=1x+i=1xi=x+ix2+1f(x)=11+x2f(x)=arrctanx+cf(0)=π2=0+cf(x)=π2arcrtanxe(x21)L(y)=xy(0)+y(0)+π2arctanxL(y)=y(0)xx21+y(0)+π2x21arctanxx21y(x)=y(0)L1(xx21)+(y(0)+π2)L1(1x21)L1(arctanxx21)xx21=x(x1)(x+1)=ax1+bx+1a=12andb=12L1(xx21)=12ex+12ex=ch(x)1x21=12(1x11x+1)L1(1x21)=ex2ex2=sh(x)resttofindL1(arctanxx21)=δ(x)y(x)=y(o)ch(x)+(y(0)+π2)shx+δ(x)

Leave a Reply

Your email address will not be published. Required fields are marked *