Menu Close

solve-y-y-x-




Question Number 97797 by abdomathmax last updated on 09/Jun/20
solve y^(′′)  −y = x
solveyy=x
Answered by niroj last updated on 09/Jun/20
 y^(′′) −y = x    (D^2 −1)y= x    A.E.,m^2 −1=0     m=+^− 1    CF=  C_1 e^x +C_2 e^(−x)       y_1 =e^x  , y_2 =e^(−x) , Q=x    W=  determinant (((e^x      e^(−x) )),((e^x    −e^(−x) )))      W= −e^(−x) .e^x −e^(−x) .e^x =−2   PI= −y_1 ∫((y_2 Q)/W)dx +y_2 ∫((y_1 Q)/W)dx     = −e^x ∫((e^(−x) x)/(−2))dx+ e^(−x) ∫((e^x x)/(−2))dx   = (e^x /2){x.(−e^(−x) )−∫1.(−e^x )dx}−(e^(−x) /2){x.e^x −∫1.e^x dx}   = (e^x /2)(−xe^(−x) +e^x )−(e^(−x) /2)(xe^x −e^x )  =  (1/2)(−xe^(x−x) +e^(2x) −xe^(x−x) +e^(x−x) )   = (1/2)(2e^(2x) −2x)= e^(2x) −x   ∴ y= C_1 e^x +C_2 e^(−x)  +e^(2x) −x //.
yy=x(D21)y=xA.E.,m21=0m=+1CF=C1ex+C2exy1=ex,y2=ex,Q=xW=|exexexex|W=ex.exex.ex=2PI=y1y2QWdx+y2y1QWdx=exexx2dx+exexx2dx=ex2{x.(ex)1.(ex)dx}ex2{x.ex1.exdx}=ex2(xex+ex)ex2(xexex)=12(xexx+e2xxexx+exx)=12(2e2x2x)=e2xxy=C1ex+C2ex+e2xx//.
Answered by mathmax by abdo last updated on 09/Jun/20
(he)→y^(′′) −y =0 →r^2 −1=0 ⇒r =+^− 1 ⇒y_h =αe^x  +β e^(−x)  =αu_1  +βu_2   W(u_1  ,u_2 ) = determinant (((u_1        u_2 )),((u_1 ^′         u_2 ^′ )))= determinant (((e^x           e^(−x) )),((e^x         −e^(−x) )))=−2  W_1 = determinant (((0       e^(−x) )),((x       −e^(−x) )))=−xe^(−x)  and W_2 = determinant (((e^x        0)),((e^x        x)))=xe^x   v_1 =∫ (w_1 /w)dx =∫  ((−xe^(−x) )/(−2))dx =(1/2)∫ xe^(−x)  dx =(1/2){− xe^(−x)  +∫ e^(−x) dx}  =−(1/2)(x+1)e^(−x)   v_2 =∫ (w_2 /w)dx =∫ ((xe^x )/(−2))dx =−(1/2) ∫ xe^x  dx =−(1/2){ xe^x −e^x } =(1/2)(1−x)e^x   so the particular solution is   y_p =u_1 v_1  +u_2 v_2 =−(1/2)(x+1)+(1/2)(1−x) =−x   the general solution is  y(x) =y_h  +y_p  =αe^x  +β e^(−x)  −x
(he)yy=0r21=0r=+1yh=αex+βex=αu1+βu2W(u1,u2)=|u1u2u1u2|=|exexexex|=2W1=|0exxex|=xexandW2=|ex0exx|=xexv1=w1wdx=xex2dx=12xexdx=12{xex+exdx}=12(x+1)exv2=w2wdx=xex2dx=12xexdx=12{xexex}=12(1x)exsotheparticularsolutionisyp=u1v1+u2v2=12(x+1)+12(1x)=xthegeneralsolutionisy(x)=yh+yp=αex+βexx
Answered by mathmax by abdo last updated on 10/Jun/20
let solve it by laplace   e⇒L(y^(′′) )−L(y) =L(x) ⇒x^2 L(y)−xy(o)−y^′ (0)−L(y) =L(x) ⇒  (x^2 −1)L(y) =xy(0)+y^′ (0)+L(x) we have L(x)=∫_0 ^∞  t e^(−xt)  dt  =[−(t/x) e^(−xt) ]_(t=0) ^∞  +(1/x)∫_0 ^∞ e^(−xt)  dt =−(1/x^2 )[e^(−xt) ]_(t=0) ^∞  =(1/x^2 )  (also we can use L(x^n ) =((n!)/x^(n+1) )) e ⇒(x^2 −1)L(y) =xy(o)+y^′ (0)+(1/x^2 ) ⇒  L(y) =(x/(x^2 −1))y(0) +((y^′ (0))/(x^2 −1)) +(1/(x^2 (x−1))) ⇒y(x) =y(0)L^(−1) ((x/(x^2 −1)))+y^′ (0)L^(−1) ((1/(x^2 −1)))  +L^(−1) ((1/(x^2 (x−1))))  we havef(x) (x/(x^2 −1)) =(1/2)x((1/(x−1))−(1/(x+1)))  =(1/2)((x/(x−1))−(x/(x+1))) =(1/2)(((x−1+1)/(x−1))−((x+1−1)/(x+1)))=(1/2)((1/(x−1))+(1/(x+1))) ⇒  L^(−1) (f)=(1/2)e^x  +(1/2) e^(−x)   g(x) =(1/(x^2 −1)) =(1/2)((1/(x−1))−(1/(x+1)))⇒L^(−1) (g) =(1/2)e^x −(1/2)e^(−x)   h(x) =(1/(x^2 (x−1))) =(a/x) +(b/x^2 ) +(c/(x−1))  b =−1  ,  c =1   lim_(x→+∞) xh(x) =0 =a+c ⇒a=−1 ⇒  h(x) =−(1/x)−(1/x^2 ) +(1/(x−1)) ⇒L^(−1) (h) =−1−x +e^x  ⇒  y(x) =y(0){((e^x  +e^(−x) )/2)} +y^′ (0){((e^x −e^(−x) )/2)} −1 −x+e^x   =(((y(o)+y^′ (0))/2)+1)e^x   +(((y(0)−y^′ (0))/2))e^(−x) −x−1
letsolveitbylaplaceeL(y)L(y)=L(x)x2L(y)xy(o)y(0)L(y)=L(x)(x21)L(y)=xy(0)+y(0)+L(x)wehaveL(x)=0textdt=[txext]t=0+1x0extdt=1x2[ext]t=0=1x2(alsowecanuseL(xn)=n!xn+1)e(x21)L(y)=xy(o)+y(0)+1x2L(y)=xx21y(0)+y(0)x21+1x2(x1)y(x)=y(0)L1(xx21)+y(0)L1(1x21)+L1(1x2(x1))wehavef(x)xx21=12x(1x11x+1)=12(xx1xx+1)=12(x1+1x1x+11x+1)=12(1x1+1x+1)L1(f)=12ex+12exg(x)=1x21=12(1x11x+1)L1(g)=12ex12exh(x)=1x2(x1)=ax+bx2+cx1b=1,c=1limx+xh(x)=0=a+ca=1h(x)=1x1x2+1x1L1(h)=1x+exy(x)=y(0){ex+ex2}+y(0){exex2}1x+ex=(y(o)+y(0)2+1)ex+(y(0)y(0)2)exx1

Leave a Reply

Your email address will not be published. Required fields are marked *