solve-y-y-x- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 97797 by abdomathmax last updated on 09/Jun/20 solvey″−y=x Answered by niroj last updated on 09/Jun/20 y″−y=x(D2−1)y=xA.E.,m2−1=0m=+−1CF=C1ex+C2e−xy1=ex,y2=e−x,Q=xW=|exe−xex−e−x|W=−e−x.ex−e−x.ex=−2PI=−y1∫y2QWdx+y2∫y1QWdx=−ex∫e−xx−2dx+e−x∫exx−2dx=ex2{x.(−e−x)−∫1.(−ex)dx}−e−x2{x.ex−∫1.exdx}=ex2(−xe−x+ex)−e−x2(xex−ex)=12(−xex−x+e2x−xex−x+ex−x)=12(2e2x−2x)=e2x−x∴y=C1ex+C2e−x+e2x−x//. Answered by mathmax by abdo last updated on 09/Jun/20 (he)→y″−y=0→r2−1=0⇒r=+−1⇒yh=αex+βe−x=αu1+βu2W(u1,u2)=|u1u2u1′u2′|=|exe−xex−e−x|=−2W1=|0e−xx−e−x|=−xe−xandW2=|ex0exx|=xexv1=∫w1wdx=∫−xe−x−2dx=12∫xe−xdx=12{−xe−x+∫e−xdx}=−12(x+1)e−xv2=∫w2wdx=∫xex−2dx=−12∫xexdx=−12{xex−ex}=12(1−x)exsotheparticularsolutionisyp=u1v1+u2v2=−12(x+1)+12(1−x)=−xthegeneralsolutionisy(x)=yh+yp=αex+βe−x−x Answered by mathmax by abdo last updated on 10/Jun/20 letsolveitbylaplacee⇒L(y″)−L(y)=L(x)⇒x2L(y)−xy(o)−y′(0)−L(y)=L(x)⇒(x2−1)L(y)=xy(0)+y′(0)+L(x)wehaveL(x)=∫0∞te−xtdt=[−txe−xt]t=0∞+1x∫0∞e−xtdt=−1x2[e−xt]t=0∞=1x2(alsowecanuseL(xn)=n!xn+1)e⇒(x2−1)L(y)=xy(o)+y′(0)+1x2⇒L(y)=xx2−1y(0)+y′(0)x2−1+1x2(x−1)⇒y(x)=y(0)L−1(xx2−1)+y′(0)L−1(1x2−1)+L−1(1x2(x−1))wehavef(x)xx2−1=12x(1x−1−1x+1)=12(xx−1−xx+1)=12(x−1+1x−1−x+1−1x+1)=12(1x−1+1x+1)⇒L−1(f)=12ex+12e−xg(x)=1x2−1=12(1x−1−1x+1)⇒L−1(g)=12ex−12e−xh(x)=1x2(x−1)=ax+bx2+cx−1b=−1,c=1limx→+∞xh(x)=0=a+c⇒a=−1⇒h(x)=−1x−1x2+1x−1⇒L−1(h)=−1−x+ex⇒y(x)=y(0){ex+e−x2}+y′(0){ex−e−x2}−1−x+ex=(y(o)+y′(0)2+1)ex+(y(0)−y′(0)2)e−x−x−1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-1-n-1-n-meant-the-floor-Next Next post: solve-y-cosx-y-sinx-cosx-sinx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.