Menu Close

Solve-y-y-x-2-




Question Number 14478 by tawa tawa last updated on 01/Jun/17
Solve:    y′ = (y − x)^2
Solve:y=(yx)2
Answered by mrW1 last updated on 01/Jun/17
let t=y−x  ⇒y=t+x  (dy/dx)=(dt/dx)+1  ⇒(dt/dx)+1=t^2   (dt/(t^2 −1))=dx  ∫(dt/(t^2 −1))=∫dx  (1/2)∫((1/(t−1))−(1/(t+1)))dt=∫dx  ln ((t−1)/(t+1))=2x+C_1   ln ((y−x−1)/(y−x+1))=2x+C_1   ((y−x−1)/(y−x+1))=ce^(2x)
lett=yxy=t+xdydx=dtdx+1dtdx+1=t2dtt21=dxdtt21=dx12(1t11t+1)dt=dxlnt1t+1=2x+C1lnyx1yx+1=2x+C1yx1yx+1=ce2x
Commented by tawa tawa last updated on 01/Jun/17
God bless you sir.
Godblessyousir.
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 01/Jun/17
x=rcosϕ,y=rsinϕ  y^′ =r^2 (cosϕ−sinϕ)^2 =r^2 (1−sin2ϕ)  y+C=∫r^2 (1−sin2ϕ)dϕ=r^2 ϕ+(r^2 /2)cos2ϕ  2y+D=r^2 (2ϕ+cos2ϕ)  2y+D=(x^2 +y^2 )(2tg^(−1) ((y/x))+((x^2 −y^2 )/(x^2 +y^2 )))
x=rcosφ,y=rsinφy=r2(cosφsinφ)2=r2(1sin2φ)y+C=r2(1sin2φ)dφ=r2φ+r22cos2φ2y+D=r2(2φ+cos2φ)2y+D=(x2+y2)(2tg1(yx)+x2y2x2+y2)
Commented by tawa tawa last updated on 01/Jun/17
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *