Menu Close

Solve-ydx-xdy-log-xdx-0-




Question Number 40422 by rahul 19 last updated on 21/Jul/18
Solve:  ydx − xdy +log xdx =0
Solve:ydxxdy+logxdx=0
Commented by prof Abdo imad last updated on 22/Jul/18
⇒y  −x(dy/dx) +ln(x)=0 ⇒xy^′  −y −ln(x)=0 ⇒  xy^′  −y  =ln(x)    he ⇒xy^′  −y =0 ⇒(y^′ /y) =(1/x) ⇒ln∣y∣=ln∣x∣+c ⇒  ⇒y =k∣x∣   case1  x>0  mvc method give   y^′  =k^′ x +k  e)⇒x(k^′ x+k)−kx =ln(x)⇒  k^′ x^2  =ln(x) ⇒ k^′  =((ln(x))/x^2 ) ⇒ k(x)= ∫_. ^x  ((ln(t))/t^2 )dt +c  by parts ∫   ((ln(t))/t^2 )dt =−(1/t)ln(t)+∫ (1/t) (dt/t)  =−(1/t)ln(t)−(1/t) ⇒k(x)=−((ln(x))/x) −(1/x) +c ⇒  y(x)=x(   −((ln(x))/x) −(1/x) +c)  =cx−1 −ln(x)  case 2 x<0  we follow the same method .
yxdydx+ln(x)=0xyyln(x)=0xyy=ln(x)hexyy=0yy=1xlny∣=lnx+cy=kxcase1x>0mvcmethodgivey=kx+ke)x(kx+k)kx=ln(x)kx2=ln(x)k=ln(x)x2k(x)=.xln(t)t2dt+cbypartsln(t)t2dt=1tln(t)+1tdtt=1tln(t)1tk(x)=ln(x)x1x+cy(x)=x(ln(x)x1x+c)=cx1ln(x)case2x<0wefollowthesamemethod.
Answered by tanmay.chaudhury50@gmail.com last updated on 21/Jul/18
((xdy−ydx)/x^2 )=((lnxdx)/x^2 )  d((y/x))=((lnxdx)/x^2 )  ∫d((y/x))=lnx∫x^(−2) dx−∫(1/x).((x^(−1) /(−1)))dx  (y/x)=−((lnx)/x)+∫(dx/x^2 )+c  (y/x)=−((lnx)/x)−(1/x)+c  ((y+1+lnx)/x)=c
xdyydxx2=lnxdxx2d(yx)=lnxdxx2d(yx)=lnxx2dx1x.(x11)dxyx=lnxx+dxx2+cyx=lnxx1x+cy+1+lnxx=c
Commented by rahul 19 last updated on 21/Jul/18
thank you sir ��

Leave a Reply

Your email address will not be published. Required fields are marked *