Menu Close

solving-ax-4-bx-3-cx-2-dx-e-0-a-0-b-c-d-e-Q-special-cases-easy-to-solve-ax-4-e-0-solve-at-2-e-0-x-t-1-2-ax-4-cx-2-e-0-solve-at-2-ct-e-0-x-




Question Number 42826 by MJS last updated on 03/Sep/18
solving  ax^4 +bx^3 +cx^2 +dx+e=0  (a≠0, b, c, d, e)∈Q              special cases (easy to solve)            ax^4 +e=0 solve at^2 +e=0 ⇒ x=±(√t_(1, 2) )            ax^4 +cx^2 +e=0 solve at^2 +ct+e=0 ⇒ x=±(√t_(1, 2) )    always try all factors of ±e  because a(x−α)(x−β)(x−γ)(x−δ)=ax^4 +...+αβγδ  ⇒ e=αβγδ    next we must find the nature of the solutions  4 real solutions  2 real & 2 complex solutions  4 complex solutions  a, b, c, d, e ∈Q ⇒ complex solutions always in  conjugated pairs  draw the function or calculate some values  to find the number of real solutions    divide by a  x^4 +px^3 +qx^2 +rx+s=0  [p=(b/a)  q=(c/a)  r=(d/a)  s=(e/a)]    I′ll soon post some cases I′ve been able to solve  as comments
solvingax4+bx3+cx2+dx+e=0(a0,b,c,d,e)Qspecialcases(easytosolve)ax4+e=0solveat2+e=0x=±t1,2ax4+cx2+e=0solveat2+ct+e=0x=±t1,2alwaystryallfactorsof±ebecausea(xα)(xβ)(xγ)(xδ)=ax4++αβγδe=αβγδnextwemustfindthenatureofthesolutions4realsolutions2real&2complexsolutions4complexsolutionsa,b,c,d,eQcomplexsolutionsalwaysinconjugatedpairsdrawthefunctionorcalculatesomevaluestofindthenumberofrealsolutionsdividebyax4+px3+qx2+rx+s=0[p=baq=car=das=ea]IllsoonpostsomecasesIvebeenabletosolveascomments
Commented by Tawa1 last updated on 03/Sep/18
Great sir. God bless you sir
Greatsir.Godblessyousir
Commented by Necxx last updated on 03/Sep/18
Write a ten digit number containing 0-9. Situations are, * Each numbers should have used exactly once. * First n numbers should be divisible by n. e.g, 123, this is three digit number and divisible by 3. 1024, its a four digit number and divisible by 4....
Commented by MJS last updated on 03/Sep/18
4 real solutions x_1 , x_2 , x_3 , x_4  can be put as this:  x_1 =α−(√β)  x_2 =α+(√β)  x_3 =γ−(√δ)  x_4 =γ+(√δ)  expanding (x−x_1 )(x−x_2 )(x−x_3 )(x−x_4 ) we get  x^4 −       −2(α+γ)x^3 +       +(α^2 +4αγ−β+γ^2 −δ)x^2 −       −2(α^2 γ+αγ^2 −αδ−βγ)x+       +(α^2 −β)(γ^2 −δ)  this must be the same as  x^4 +px^3 +qx^2 +rx+s ⇒  ⇒  { (((1)  −2(α+γ)=p)),(((2)  (α^2 +4αγ−β+γ^2 −δ)=q)),(((3)  −2(α^2 γ+αγ^2 −αδ−βγ)=r)),(((4)  (α^2 −β)(γ^2 −δ)=s)) :}  solve (1) for α, (2) for β, (3) for δ, insert in (4)  which leads to  γ^6 +((3p)/2)γ^5 +((3p^2 +2q)/4)γ^4 +((p(p^2 +4q))/8)γ^3 +((2p^2 q+pr+q^2 −4s)/(16))γ^2 +((p(pr+q^2 −4s))/(32))γ−((p^2 s−pqr+r^2 )/(64))=0  γ=u−(p/4)  u^6 −((3p^2 −8q)/(16))u^4 +((3p^4 −16(p^2 q−pr−q^2 +4s))/(256))u^2 −(((p^3 −4pq+8r)^2 )/(4096))=0  u=(√v)  v^3 −((3p^2 −8q)/(16))v^2 +((3p^4 −16(p^2 q−pr−q^2 +4s))/(256))v−(((p^3 −4pq+8r)^2 )/(4096))=0  v=w+((3p^2 −8q)/(48))  w^3 +((3pr−q^2 −12s)/(48))w−((27p^2 s−9pqr+2q^3 −72qs+27r^3 )/(1728))=0  we need one real solution for w and then we  go back w→v→u→γ  α=−(p/4)−(1/(12))(√(3(48w+3p^2 −8q)))  β=−w+(p^2 /8)−(q/3)+((p^3 −4pq+8r)/(8(√(3(48w+3p^2 −8q)))))  γ=−(p/4)+(1/(12))(√(3(48w+3p^2 −8q)))  δ=−w+(p^2 /8)−(q/3)−((p^3 −4pq+8r)/(8(√(3(48w+3p^2 −8q)))))  if we found a “beautiful” w it′s fine, if not we  can use a calculator to get good approximations
4realsolutionsx1,x2,x3,x4canbeputasthis:x1=αβx2=α+βx3=γδx4=γ+δexpanding(xx1)(xx2)(xx3)(xx4)wegetx42(α+γ)x3++(α2+4αγβ+γ2δ)x22(α2γ+αγ2αδβγ)x++(α2β)(γ2δ)thismustbethesameasx4+px3+qx2+rx+s{(1)2(α+γ)=p(2)(α2+4αγβ+γ2δ)=q(3)2(α2γ+αγ2αδβγ)=r(4)(α2β)(γ2δ)=ssolve(1)forα,(2)forβ,(3)forδ,insertin(4)whichleadstoγ6+3p2γ5+3p2+2q4γ4+p(p2+4q)8γ3+2p2q+pr+q24s16γ2+p(pr+q24s)32γp2spqr+r264=0γ=up4u63p28q16u4+3p416(p2qprq2+4s)256u2(p34pq+8r)24096=0u=vv33p28q16v2+3p416(p2qprq2+4s)256v(p34pq+8r)24096=0v=w+3p28q48w3+3prq212s48w27p2s9pqr+2q372qs+27r31728=0weneedonerealsolutionforwandthenwegobackwvuγα=p41123(48w+3p28q)β=w+p28q3+p34pq+8r83(48w+3p28q)γ=p4+1123(48w+3p28q)δ=w+p28q3p34pq+8r83(48w+3p28q)ifwefoundabeautifulwitsfine,ifnotwecanuseacalculatortogetgoodapproximations
Commented by Tawa1 last updated on 03/Sep/18
Wow. God less you sir
Wow.Godlessyousir
Commented by malwaan last updated on 04/Sep/18
Greet
Greet
Commented by MJS last updated on 05/Sep/18
in case of 2 real and 2 complex solutions put  x_1 =α−(√β)  x_2 =α+(√β)  x_3 =γ−i(√δ)  x_4 =γ+i(√δ)  in case of 4 complex solutions put  x_1 =α−(√β)  x_2 =α+(√β)  x_3 =γ−i(√δ)  x_4 =γ+i(√δ)  and follow the same procedure as above
incaseof2realand2complexsolutionsputx1=αβx2=α+βx3=γiδx4=γ+iδincaseof4complexsolutionsputx1=αβx2=α+βx3=γiδx4=γ+iδandfollowthesameprocedureasabove
Commented by Tawa1 last updated on 05/Sep/18
God bless you sir.
Godblessyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *