Solving-by-Gaussian-elimination-using-the-following-system-of-linear-equation-x-3y-2z-6-2x-4y-3z-8-3x-6y-8z-5- Tinku Tara June 4, 2023 Matrices and Determinants 0 Comments FacebookTweetPin Question Number 116695 by bemath last updated on 06/Oct/20 SolvingbyGaussianeliminationusingthefollowingsystemoflinearequation{x−3y−2z=62x−4y−3z=8−3x+6y+8z=−5 Answered by bobhans last updated on 06/Oct/20 SolvingbyGaussianeliminationusingthefollowingsystemoflinearequation{x−3y−2z=62x−4y−3z=8−3x+6y+8z=−5{L1:x−3y−2z=6L2:2x−4y−3z=8L3:−3x+6y+8z=−5Thesestepyield(−2)L1:−2x+6y+4z=−12L2:2x−4y−3z=8____________________+L2∗:2y+z=−43L1:3x−9y−6z=18L3:−3x+6y+8z=−5___________________+L3∗:−3y+2z=13Thus,theoriginalsystemisreplacedbythefollowingsystem′L1:x−3y−2z=6L2:2y+z=−4L3:−3y+2z=13Nextstepyield3L2:6y+3z=−122L3:−6y+4z=26_______________+L3∗∗:7z=14Thusoursystemisreplacedbythefollowingsystem:L1:x−3y−2z=6L2:2y+z=−4L3:7z=14ThesystemisnowtriangularformsoPartAiscompleted.PartB.Thevaluesforunknownsareobtainedinreverseorderz,y,xbyback−substitutionSpecifically,{7z=14→z=22y+z=−4→2y=−6,y=−3x−3y−2z=6,x+9−4=6,x=1Thusthesolutionofthetriangularsystemandhencetheoriginalsystemisasfollowsx=1;y=−3;z=2 Commented by bemath last updated on 06/Oct/20 gavekudos… Answered by 1549442205PVT last updated on 06/Oct/20 |1−3−262−4−38−368−5|(multiplyingfirstrowby2thensubstractfromsecondrownext:multiplyingfirstrowby3thenaddingtothirdrow∼|1−3−26021−40−3213|Multiplyingsecondrowby32thenaddingtothirdrow∼|1−3−26021−400727|Wegetthetrianglesystem:{x−3y−2z=62y+z=−472z=7⇔{z=2y=−3x=1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Show-that-the-equation-of-tangent-to-the-ellipse-x-2-a-2-y-2-b-2-1-at-the-end-of-lactus-rectum-which-lie-in-the-1-st-quadrant-is-xe-y-a-0-merry-X-mas-and-happy-new-year-Next Next post: Question-182238 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.