Menu Close

Solving-by-Gaussian-elimination-using-the-following-system-of-linear-equation-x-3y-2z-6-2x-4y-3z-8-3x-6y-8z-5-




Question Number 116695 by bemath last updated on 06/Oct/20
Solving by Gaussian elimination  using the following system of  linear equation  { ((x−3y−2z=6)),((2x−4y−3z=8)),((−3x+6y+8z=−5)) :}
SolvingbyGaussianeliminationusingthefollowingsystemoflinearequation{x3y2z=62x4y3z=83x+6y+8z=5
Answered by bobhans last updated on 06/Oct/20
 Solving by Gaussian elimination using  the following system of linear equation    { ((x−3y−2z = 6)),((2x−4y−3z = 8 )),((−3x+6y+8z = −5)) :}    { ((L_1  : x−3y−2z=6)),((L_2  : 2x−4y−3z=8)),((L_3  : −3x+6y+8z=−5)) :}  These step yield    (−2)L_1  :  −2x+6y+4z=−12               L_2  :     2x−4y−3z=8            ____________________ +          L_2 ^∗  :        2y+z = −4    3L_1  :    3x−9y−6z=18        L_3  :−3x +6y+8z=−5       ___________________ +        L_3 ^∗  : −3y+2z = 13  Thus ,the original system is replaced by the   following system ′  L_1  : x−3y−2z=6  L_2  :         2y+z =−4  L_3  :   −3y+2z=13  Next step yield    3L_2  :    6y+3z = −12   2L_3  : −6y+4z=26   _______________ +   L_3 ^(∗∗)  : 7z = 14   Thus our system is replaced by the following  system : L_1  : x−3y−2z=6                      L_2  :         2y+z=−4                      L_3  :                 7z=14   The system is now triangular form   so Part A is completed.  Part B. The values for unknowns are obtained  in reverse order z,y,x by back−substitution  Specifically,  { ((7z=14→z=2)),((2y+z=−4→2y=−6,y=−3)),((x−3y−2z=6,x+9−4=6,x=1)) :}  Thus the solution of the triangular system  and hence the original system is as follows  x = 1; y=−3 ; z=2
SolvingbyGaussianeliminationusingthefollowingsystemoflinearequation{x3y2z=62x4y3z=83x+6y+8z=5{L1:x3y2z=6L2:2x4y3z=8L3:3x+6y+8z=5Thesestepyield(2)L1:2x+6y+4z=12L2:2x4y3z=8____________________+L2:2y+z=43L1:3x9y6z=18L3:3x+6y+8z=5___________________+L3:3y+2z=13Thus,theoriginalsystemisreplacedbythefollowingsystemL1:x3y2z=6L2:2y+z=4L3:3y+2z=13Nextstepyield3L2:6y+3z=122L3:6y+4z=26_______________+L3:7z=14Thusoursystemisreplacedbythefollowingsystem:L1:x3y2z=6L2:2y+z=4L3:7z=14ThesystemisnowtriangularformsoPartAiscompleted.PartB.Thevaluesforunknownsareobtainedinreverseorderz,y,xbybacksubstitutionSpecifically,{7z=14z=22y+z=42y=6,y=3x3y2z=6,x+94=6,x=1Thusthesolutionofthetriangularsystemandhencetheoriginalsystemisasfollowsx=1;y=3;z=2
Commented by bemath last updated on 06/Oct/20
gave kudos...
gavekudos
Answered by 1549442205PVT last updated on 06/Oct/20
 determinant ((1,(−3),(−2),6),(2,(−4),(−3),8),((−3),6,8,(−5)))  (multiplying first row by 2 then substract from second row  next:multiplying first row by 3 then adding to third row  ∼ determinant ((1,(−3),(−2),6),(0,2,1,(−4)),(0,(−3),2,(13)))  Multiplying second row by (3/2)then adding to third row  ∼ determinant ((1,(−3),(−2),6),(0,2,1,(−4)),(0,0,(7/2),7))  We get the triangle system:   { ((x−3y−2z=6)),((2y+z=−4)),(((7/2)z=7)) :}⇔ { ((z=2)),((y=−3)),((x=1)) :}
|132624383685|(multiplyingfirstrowby2thensubstractfromsecondrownext:multiplyingfirstrowby3thenaddingtothirdrow|1326021403213|Multiplyingsecondrowby32thenaddingtothirdrow|1326021400727|Wegetthetrianglesystem:{x3y2z=62y+z=472z=7{z=2y=3x=1

Leave a Reply

Your email address will not be published. Required fields are marked *