Menu Close

solving-the-following-system-of-equations-3x-y-x-3y-x-2-3y-z-y-3z-y-2-3z-x-z-3x-z-2-




Question Number 119921 by bramlexs22 last updated on 28/Oct/20
solving the following system of equations   { ((((3x−y)/(x−3y))=x^2 )),((((3y−z)/(y−3z))=y^2 )),((((3z−x)/(z−3x))=z^2 )) :}
solvingthefollowingsystemofequations{3xyx3y=x23yzy3z=y23zxz3x=z2
Answered by mindispower last updated on 28/Oct/20
⇒x=((z^3 −3z)/(−3z^2 +1))  tg(Σa_k )=((Σ(−1)^k S_(2k+1) )/(Σ(−1)^k S_(2k) )),  Withe S_0 =1  tg(a+b+c)=((tg(a)+tg(b)+tg(c)−tg(a)tg(b)tg(c))/(1−tg(a)tg(b)−tg(c)tg(b)−tg(a)tg(c)))  a=b=c  tg(3c)=((3tg(c)−tg^3 (c))/(1−3tg^2 (c))),  let z=tg(c),y=tg(a),x=tg(b)  ⇔tg(a)=((3tg(b)−tg^3 (b))/(1−3tg^2 (b)))=tg(3b)...Equation 1  ⇔tg(c)=((3tg(a)−tg^3 (a))/(1−3tg^2 (a)))=tg(3a)...E(2)  ⇔tg(b)=((3tg(c)−tg^3 (c))/(1−3tg^2 (c)))=tg(3c)  tg(a)=tg(3b)⇒a=3b,a=kπ+3b  tg(c)=tg(3a)⇒c=sπ+3a  tg(b)=tg(3c)⇒b=3c+dπ=3(sπ+3a)+dπ  b=(d+3s)π+9kπ+27b  b=((−kπ)/3)−(((d+3s)/(27)))π,d,s,k∈Z  find b,⇒a⇒c,tg(a)=y,tg(c)=z,tg(b)=x
x=z33z3z2+1tg(Σak)=Σ(1)kS2k+1Σ(1)kS2k,WitheS0=1tg(a+b+c)=tg(a)+tg(b)+tg(c)tg(a)tg(b)tg(c)1tg(a)tg(b)tg(c)tg(b)tg(a)tg(c)a=b=ctg(3c)=3tg(c)tg3(c)13tg2(c),letz=tg(c),y=tg(a),x=tg(b)tg(a)=3tg(b)tg3(b)13tg2(b)=tg(3b)Equation1tg(c)=3tg(a)tg3(a)13tg2(a)=tg(3a)E(2)tg(b)=3tg(c)tg3(c)13tg2(c)=tg(3c)tg(a)=tg(3b)a=3b,a=kπ+3btg(c)=tg(3a)c=sπ+3atg(b)=tg(3c)b=3c+dπ=3(sπ+3a)+dπb=(d+3s)π+9kπ+27bb=kπ3(d+3s27)π,d,s,kZfindb,ac,tg(a)=y,tg(c)=z,tg(b)=x
Answered by MJS_new last updated on 28/Oct/20
one solution is x=y=z=±i  for the other solutions let  y=px∧z=qx  ⇒   { ((((p−3)/(3p−1))=x^2 )),((((3p−q)/(p−3q))=p^2 x^2 )),((((3q−1)/(q−3))=q^2 x^2 )) :}  ⇒  ((p−3)/(3p−1))=((3p−q)/(p^2 (p−3q)))=((3q−1)/(q^2 (q−3)))  we can eliminate one of the two unknown  and get a polynome of degree 13 with one  solution =1. the other 12 are ∈R but I only  can approximate  q=((p(p^3 −3p^2 −9p+3))/(3p^3 −9p^2 −3p+1))  (p−1)((p^(12) +1)−20(p^(11) +p)+34(p^(10) +p^2 )+700(p^9 +p^3 )−2705(p^8 +p^4 )−680(p^7 +p^5 )+9436p^6 )=0  p_1 =1  p_2 ≈−5.87781  p_3 ≈−1.63530  p_4 ≈−.611508  p_5 ≈−.170131  p_6 ≈.0637272  p_7 ≈.199046  p_8 ≈.278216  p_9 ≈.320163  p_(10) ≈3.12340  p_(11) ≈3.59433  p_(12) ≈5.02397  p_(13) ≈15.6919  please do the rest for yourself
onesolutionisx=y=z=±ifortheothersolutionslety=pxz=qx{p33p1=x23pqp3q=p2x23q1q3=q2x2p33p1=3pqp2(p3q)=3q1q2(q3)wecaneliminateoneofthetwounknownandgetapolynomeofdegree13withonesolution=1.theother12areRbutIonlycanapproximateq=p(p33p29p+3)3p39p23p+1(p1)((p12+1)20(p11+p)+34(p10+p2)+700(p9+p3)2705(p8+p4)680(p7+p5)+9436p6)=0p1=1p25.87781p31.63530p4.611508p5.170131p6.0637272p7.199046p8.278216p9.320163p103.12340p113.59433p125.02397p1315.6919pleasedotherestforyourself

Leave a Reply

Your email address will not be published. Required fields are marked *