Menu Close

solving-u-v-w-with-u-v-w-C-finding-all-possible-solutions-I-tested-this-with-several-values-and-found-no-mistake-please-review-and-comment-I-hope-this-will-help-at-least-some-of-you-




Question Number 60175 by MJS last updated on 18/May/19
solving u^v =w with u, v, w ∈C  finding all possible solutions  I tested this with several values and found  no mistake. please review and comment.  I hope this will help at least some of you.
solvinguv=wwithu,v,wCfindingallpossiblesolutionsItestedthiswithseveralvaluesandfoundnomistake.pleasereviewandcomment.Ihopethiswillhelpatleastsomeofyou.
Commented by MJS last updated on 18/May/19
Commented by MJS last updated on 18/May/19
the answers to my former question 60039:  z^i =(1/2)−(1/2)i  p=0; q=1; a=((√2)/2); α=−(π/4)  p=0 ⇒ r=e^(π(−(1/4)+2n))  with n∈Z  θ=(1/2)ln 2  z_n =e^(π(−(1/4)+2n)) e^(i((ln 2)/2)) =e^(π(−(1/4)+2n)) (cos ((ln 2)/2) +i sin ((ln 2)/2))  z_0 ≈.428829+.154872i  z_(−1) ≈.000800814+.000289214i  z_1 ≈229.634+82.9325i    z^(1−i) =1+i  p=1; q=−1; a=(√2); α=(π/4)  −(9/8)−((ln 2)/(4π))≤n<(7/8)−((ln 2)/(4π))  −1.18016≤n<.819841  ⇒ n∈{−1, 0}  r=2^(1/4) e^(−π(n+(1/8))) ; r_(−1) =2^(1/4) e^((7π)/8) ; r_0 =2^(1/4) e^(−(π/8))   θ=πn+(π/8)+((ln 2)/4); θ_(−1) =((ln 2)/4)−((7π)/8); θ_0 =((ln 2)/4)+(π/8)  z_(−1) ≈−15.6841−9.96443i  z_0 ≈.677773+.430602i
theanswerstomyformerquestion60039:zi=1212ip=0;q=1;a=22;α=π4p=0r=eπ(14+2n)withnZθ=12ln2zn=eπ(14+2n)eiln22=eπ(14+2n)(cosln22+isinln22)z0.428829+.154872iz1.000800814+.000289214iz1229.634+82.9325iz1i=1+ip=1;q=1;a=2;α=π498ln24πn<78ln24π1.18016n<.819841n{1,0}r=214eπ(n+18);r1=214e7π8;r0=214eπ8θ=πn+π8+ln24;θ1=ln247π8;θ0=ln24+π8z115.68419.96443iz0.677773+.430602i

Leave a Reply

Your email address will not be published. Required fields are marked *