Question Number 88758 by mr W last updated on 12/Apr/20
$${Some}\:{people}\:{may}\:{have}\:{noticed}\:{that}\:{i} \\ $$$${usually}\:{calculate}\:{areas}\:{concerning} \\ $$$${parabola}\:{directly},\:{without}\:{applying} \\ $$$${complicated}\:{integral}\:{calculus}. \\ $$$${Here}\:{i}\:{am}\:{giving}\:{you}\:{the}\:{backgroud}.\: \\ $$$${Actually}\:{you}\:{know}\:{all}\:{these}\:{things}\:{and} \\ $$$${you}\:{are}\:{able}\:{to}\:{prove}\:{them}.\:{Maybe} \\ $$$${you}\:{just}\:{forget}\:{to}\:{apply}\:{them}. \\ $$
Commented by mr W last updated on 12/Apr/20
Commented by mr W last updated on 12/Apr/20
Commented by TawaTawa1 last updated on 12/Apr/20
$$\mathrm{Wow}\:\mathrm{sir},\:\mathrm{it}\:\mathrm{really}\:\mathrm{helped}\:\mathrm{me}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}\:\mathrm{sir} \\ $$$$\mathrm{for}\:\mathrm{this}. \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{love}\:\mathrm{to}\:\mathrm{see}\:\mathrm{more}\:\mathrm{of}\:\mathrm{this}\:\mathrm{once}\:\mathrm{in}\:\mathrm{a}\:\mathrm{while}. \\ $$$$\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}\:\mathrm{and}\:\mathrm{effort}\:\mathrm{sir} \\ $$$$ \\ $$
Commented by Learner-123 last updated on 12/Apr/20
Wonderful!
Commented by Prithwish Sen 1 last updated on 13/Apr/20
$$\mathrm{Great}\:\mathrm{sir}.\:\mathrm{Thanks}\:\mathrm{for}\:\mathrm{this}\:\mathrm{and}\:\mathrm{thanks}\:\mathrm{for}\:\mathrm{almost} \\ $$$$\mathrm{everything}.\:\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Commented by Prithwish Sen 1 last updated on 13/Apr/20
$$\mathrm{Sir}\:\mathrm{how}\:\mathrm{could}\:\mathrm{one}\:\mathrm{be}\:\mathrm{good}\:\mathrm{at}\:\mathrm{geometry}\:?\:\mathrm{Is}\:\mathrm{there}\: \\ $$$$\mathrm{any}\:\mathrm{good}\:\mathrm{book}/\mathrm{s}\:\mathrm{to}\:\mathrm{follow}\:?\:\mathrm{If}\:\mathrm{there}\:\mathrm{then}\:\mathrm{please} \\ $$$$\mathrm{name}\:\mathrm{them}.\:\mathrm{Or}\:\mathrm{else}\:\mathrm{give}\:\mathrm{your}\:\mathrm{valuable}\:\mathrm{sugesstion}. \\ $$
Commented by mr W last updated on 13/Apr/20
$${sorry},\:{i}\:{can}'{t}\:{tell}\:{you}\:{the}\:{truth},\:{because} \\ $$$${the}\:{truth}\:{is}\:{that}\:{i}\:{really}\:{know}\:{no}\:{book},\: \\ $$$${all}\:{what}\:{i}\:{know}\:{about}\:{geometry}\:{comes} \\ $$$${from}\:{my}\:{school}\:{time},\:{long}\:{long}\:{time} \\ $$$${ago}… \\ $$$${but}\:{seriously},\:{i}\:{have}\:{love}\:{geometry} \\ $$$${in}\:{the}\:{school}\:{and}\:{i}\:{was}\:{even}\:{better}\:{than}\:{all} \\ $$$${the}\:{teachers}\:{there}.\:{and}\:{things}\:{you}\:{love} \\ $$$${you}\:{won}'{t}\:{forget}!\:{just}\:{love}\:{it},\:{this} \\ $$$${is}\:{the}\:{only}\:{suggestion}\:{i}\:{can}\:{give}\:{you}. \\ $$
Commented by Prithwish Sen 1 last updated on 13/Apr/20
$$\mathrm{Thanks}\:\mathrm{sir}.\: \\ $$
Commented by otchereabdullai@gmail.com last updated on 13/Apr/20
$$\mathrm{yes}\:\mathrm{my}\:\mathrm{man}\:\mathrm{prof}\:\mathrm{w}\:\mathrm{i}\:\mathrm{could}\:\mathrm{see}\:\mathrm{you}\:\mathrm{were} \\ $$$$\mathrm{good}\:\mathrm{than}\:\mathrm{your}\:\mathrm{teacher}\:.\:\mathrm{God}\:\mathrm{has}\:\mathrm{really} \\ $$$$\mathrm{bless}\:\mathrm{you}\:\mathrm{with}\:\mathrm{all}\:\mathrm{necessary}\:\mathrm{knowledge} \\ $$$$\mathrm{in}\:\mathrm{mathematics}\:\mathrm{and}\:\mathrm{physics}\:\mathrm{and}\:\mathrm{may} \\ $$$$\mathrm{the}\:\mathrm{good}\:\mathrm{God}\:\mathrm{continue}\:\mathrm{to}\:\mathrm{add}\:\mathrm{more}\: \\ $$$$\mathrm{because}\:\mathrm{you}\:\mathrm{have}\:\mathrm{been}\:\mathrm{a}\:\mathrm{blessing}\:\mathrm{to}\:\mathrm{all} \\ $$$$\mathrm{of}\:\mathrm{us}\:\mathrm{here}\:\mathrm{on}\:\mathrm{this}\:\mathrm{noble}\:\mathrm{platform}.\:\mathrm{what} \\ $$$$\mathrm{i}\:\mathrm{like}\:\mathrm{about}\:\mathrm{you}\:\mathrm{most}\:\mathrm{is}\:\mathrm{your}\:\mathrm{detailed}\: \\ $$$$\mathrm{explanation}\:\mathrm{to}\:\mathrm{questions}\:\mathrm{and}\:\mathrm{different} \\ $$$$\mathrm{approaches}\:\mathrm{to}\:\mathrm{questions}\:\mathrm{and}\:\mathrm{above}\:\mathrm{all} \\ $$$$\mathrm{you}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{every}\:\mathrm{question}\:.\:\mathrm{am}\:\mathrm{even} \\ $$$$\mathrm{shot}\:\mathrm{of}\:\mathrm{words} \\ $$
Commented by mr W last updated on 13/Apr/20
$${not}\:{all}\:{true},\:{but}\:{thanks}\:{for}\:{your}\:{kindness}! \\ $$$${and}\:{god}\:{bless}\:{you}\:{too}! \\ $$
Commented by mr W last updated on 13/Apr/20
شكرا
Commented by otchereabdullai@gmail.com last updated on 13/Apr/20
$$\mathrm{Amen} \\ $$
Commented by I want to learn more last updated on 17/Apr/20
$$\mathrm{Thanks}\:\mathrm{sir}.\:\:\mathrm{how}\:\mathrm{is}\:\:\:\:\mathrm{A}_{\mathrm{1}} \:\:=\:\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ab}\:\:\mathrm{and}\:\:\mathrm{A}_{\mathrm{2}} \:\:=\:\:\frac{\mathrm{2}}{\mathrm{3}}\mathrm{ab}\:\:\:\mathrm{and}\:\mathrm{for}\:\mathrm{the}\:\mathrm{second} \\ $$$$\mathrm{parabola}.\:\mathrm{The}\:\mathrm{A}_{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{3}}\mathrm{ab}\:\mathrm{is}\:\mathrm{for}\:\mathrm{both}\:\mathrm{sides}?\:\left(+\:\:\mathrm{and}\:−\:\mathrm{sides}?\right) \\ $$$$\mathrm{or}\:\mathrm{we}\:\mathrm{do}\:\mathrm{A}_{\mathrm{1}} \:\mathrm{for}\:\mathrm{positive}\:\mathrm{side}\:\mathrm{and}\:\mathrm{A}_{\mathrm{1}} \:\mathrm{for}\:\mathrm{negative}\:\mathrm{side}. \\ $$
Commented by mr W last updated on 17/Apr/20
$${parabola}:\:{y}={kx}^{\mathrm{2}} \\ $$$${A}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:{a}} {ydx}=\int_{\mathrm{0}} ^{\:{a}} {kx}^{\mathrm{2}} {dx}=\frac{{ka}^{\mathrm{3}} }{\mathrm{3}}=\frac{{a}×{ka}^{\mathrm{2}} }{\mathrm{3}}=\frac{{ab}}{\mathrm{3}} \\ $$$${A}_{\mathrm{2}} ={ab}−{A}_{\mathrm{1}} =\frac{\mathrm{2}{ab}}{\mathrm{3}} \\ $$$$ \\ $$$${we}\:{are}\:{treating}\:{here}\:{area},\:{which}\:{is} \\ $$$${a}\:{positive}\:{quantity}. \\ $$$${a}\:{and}\:{b}\:{are}\:{length}\:{of}\:{line}\:{segments}, \\ $$$${they}\:{are}\:{also}\:{positive}\:{quantity}.\:{they} \\ $$$${are}\:{not}\:{always}\:{the}\:{same}\:{as}\:{coordinates}!\: \\ $$$${the}\:{formula}\:{is}\:{certainly}\:{also}\:{for} \\ $$$${the}\:{right}\:{side}\:{of}\:{the}\:{parabola}. \\ $$
Commented by I want to learn more last updated on 17/Apr/20
$$\mathrm{I}\:\mathrm{understand}\:\mathrm{now}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 17/Apr/20
Commented by I want to learn more last updated on 17/Apr/20
$$\mathrm{Thanks}\:\mathrm{sir} \\ $$
Commented by mr W last updated on 19/Apr/20
Commented by mr W last updated on 19/Apr/20
Commented by mr W last updated on 19/Apr/20
$${see}\:{also}\:{Q}\mathrm{89781} \\ $$
Commented by mr W last updated on 06/May/20
Commented by mr W last updated on 06/May/20
$${say}\:{y}={ax}^{\mathrm{2}} \\ $$$${y}_{\mathrm{1}} ={ax}_{\mathrm{1}} ^{\mathrm{2}} \\ $$$${y}_{\mathrm{2}} ={ax}_{\mathrm{2}} ^{\mathrm{2}} \\ $$$$\Rightarrow\frac{{y}_{\mathrm{2}} }{{y}_{\mathrm{1}} }=\frac{{ax}_{\mathrm{2}} ^{\mathrm{2}} }{{ax}_{\mathrm{1}} ^{\mathrm{2}} }=\left(\frac{{x}_{\mathrm{2}} }{{x}_{\mathrm{1}} }\right)^{\mathrm{2}} \\ $$
Answered by mr W last updated on 12/Apr/20
$${Example}\:\mathrm{1} \\ $$$$\left({see}\:{Q}\mathrm{88616}\right) \\ $$
Commented by mr W last updated on 12/Apr/20
Commented by mr W last updated on 12/Apr/20
$${width}={a}=\mathrm{4}−\mathrm{0}=\mathrm{4} \\ $$$${y}_{{P}} =\frac{\mathrm{9}+\mathrm{1}}{\mathrm{2}}=\mathrm{5} \\ $$$${x}_{{Q}} =\frac{\mathrm{0}+\mathrm{4}}{\mathrm{2}}=\mathrm{2} \\ $$$${y}_{{Q}} =\left(\mathrm{2}−\mathrm{3}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$$ \\ $$$${height}\:{b}={y}_{{P}} −{y}_{{Q}} =\mathrm{5}−\mathrm{1}=\mathrm{4} \\ $$$$ \\ $$$${area}\:{of}\:{shaded}\:{region} \\ $$$${A}=\frac{\mathrm{2}}{\mathrm{3}}{ab}=\frac{\mathrm{2}}{\mathrm{3}}×\mathrm{4}×\mathrm{4}=\frac{\mathrm{32}}{\mathrm{3}} \\ $$
Answered by mr W last updated on 12/Apr/20
$${Example}\:\mathrm{2} \\ $$$$\left({see}\:{Q}\mathrm{88606}\right) \\ $$
Commented by mr W last updated on 12/Apr/20
Commented by mr W last updated on 12/Apr/20
$${area}\:{of}\:{shaded}\:{region}\:{is}\:\frac{\mathrm{9}}{\mathrm{2}}.\:{find}\:{t}=? \\ $$$${width}\:{a}={t} \\ $$$${at}\:{midpoint}\:{of}\:{width},\:{i}.{e}.\:{at}\:{x}=\frac{{t}}{\mathrm{2}}, \\ $$$${y}_{{parabola}} =\mathrm{4}×\frac{{t}}{\mathrm{2}}−\left(\frac{{t}}{\mathrm{2}}\right)^{\mathrm{2}} =\mathrm{2}{t}−\frac{{t}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${y}_{{chord}} =\frac{\mathrm{1}}{\mathrm{2}}{y}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{4}{t}−{t}^{\mathrm{2}} \right)=\mathrm{2}{t}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$ \\ $$$${height}\:{b}={y}_{{parabola}} −{y}_{{chord}} \\ $$$$=\mathrm{2}{t}−\frac{{t}^{\mathrm{2}} }{\mathrm{4}}−\left(\mathrm{2}{t}−\frac{{t}^{\mathrm{2}} }{\mathrm{2}}\right)=\frac{{t}^{\mathrm{2}} }{\mathrm{4}} \\ $$$$ \\ $$$${area}\:{of}\:{shaded}\:{region} \\ $$$${A}=\frac{\mathrm{2}}{\mathrm{3}}{ab}=\frac{\mathrm{2}}{\mathrm{3}}×{t}×\frac{{t}^{\mathrm{2}} }{\mathrm{4}}=\frac{{t}^{\mathrm{3}} }{\mathrm{6}} \\ $$$$\frac{{t}^{\mathrm{3}} }{\mathrm{6}}=\frac{\mathrm{9}}{\mathrm{2}} \\ $$$${t}^{\mathrm{3}} =\mathrm{27} \\ $$$$\Rightarrow{t}=\mathrm{3} \\ $$