Menu Close

someone-help-cheking-this-x-3-x-c-let-x-p-2q-q-2p-p-q-p-3-8q-3-6pq-p-2q-q-3-8p-3-6pq-q-2p-3-p-2q-q-2p-p-2q-q-2p-p-2q-q-2p-c-7-p-3-q-3-6pq




Question Number 128090 by ajfour last updated on 04/Jan/21
someone help cheking this:      x^3 =x+c    let  x=(p−2q)+(q−2p)            = −(p+q)  p^3 −8q^3 −6pq(p−2q)+  q^3 −8p^3 −6pq(q−2p)+  3(p−2q)(q−2p)[(p−2q)+(q−2p)]          = (p−2q)+(q−2p)+c  ⇒  −7(p^3 +q^3 )+6pq(p+q)  −3(p+q)[5pq−2(p^2 +q^2 )]  +(p+q) = c  let  p^3 +q^3 =−(c/7)  And since   x=−(p+q)  so with  −x^3 =−x−c   we have  p^3 +q^3 +3pq(p+q)=p+q−c  ⇒   (3pq−1)(p+q)=−((6c)/7)    1−9pq+6(p^2 +q^2 )=0  (p^2 +q^2 )(p+q)−pq(p+q)=−(c/7)  say  p^2 +q^2 =t  , then  pq=((1+6t)/9)  ;  p+q=(((−((6c)/7)))/(((1+6t)/3)−1))  p+q=((9c)/(7(1−3t)))  p^2 +q^2 =(p+q)^2 −2pq  t=[((9c)/(7(1−3t)))]^2 −((2(1+6t))/9)  [((9c)/(7(1−3t)))]^2 =((21t+2)/9)  ⇒   (21t+2)(3t−1)^2 =(((27c)/7))^2   .....
someonehelpchekingthis:x3=x+cletx=(p2q)+(q2p)=(p+q)p38q36pq(p2q)+q38p36pq(q2p)+3(p2q)(q2p)[(p2q)+(q2p)]=(p2q)+(q2p)+c7(p3+q3)+6pq(p+q)3(p+q)[5pq2(p2+q2)]+(p+q)=cletp3+q3=c7Andsincex=(p+q)sowithx3=xcwehavep3+q3+3pq(p+q)=p+qc(3pq1)(p+q)=6c719pq+6(p2+q2)=0(p2+q2)(p+q)pq(p+q)=c7sayp2+q2=t,thenpq=1+6t9;p+q=(6c7)1+6t31p+q=9c7(13t)p2+q2=(p+q)22pqt=[9c7(13t)]22(1+6t)9[9c7(13t)]2=21t+29(21t+2)(3t1)2=(27c7)2..
Commented by MJS_new last updated on 04/Jan/21
after setting 6pq=−1 ⇒ q=−(1/(6p)) and you  have a fixed value after −7(p^3 +q^3 )=c because  c is given
aftersetting6pq=1q=16pandyouhaveafixedvalueafter7(p3+q3)=cbecausecisgiven
Commented by MJS_new last updated on 04/Jan/21
you′re right in this point  still I don′t get your equation after substituting  x=(p−2q)+(q−2p)
yourerightinthispointstillIdontgetyourequationaftersubstitutingx=(p2q)+(q2p)

Leave a Reply

Your email address will not be published. Required fields are marked *