Menu Close

someone-posted-this-problem-and-my-solution-followed-solve-0-1-ln-x-1-x-2-1-x-2-dx-solution-y-ln-x-1-x-2-and-dy-1-1-x-2-dx-at-x-0-y-0-and-at-x-1-y-ln-1-2-hen




Question Number 110619 by mathdave last updated on 29/Aug/20
someone posted this problem and my  solution followed  solve  ∫_0 ^1 ((ln(x+(√(1+x^2 ))))/( (√(1+x^2 ))))dx  solution  y=ln(x+(√(1+x^2 )))   and  dy=(1/( (√(1+x^2 ))))dx  at x=0,y=0  and  at  x=1,y=ln(1+(√2))  hence  I=∫_0 ^(ln(1+(√2))) (y/( (√(1+x^2 ))))×(√(1+x^2 ))dy=∫_0 ^(ln(1+(√2))) ydy  I=[(y^2 /2)]_0 ^(ln(1+(√2))) =(1/2)ln^2 (1+(√2))  ∵∫_0 ^1 ((ln(x+(√(1+x^2 ))))/( (√(1+x^2 ))))dx=(1/2)ln^2 (1+(√2))
$${someone}\:{posted}\:{this}\:{problem}\:{and}\:{my} \\ $$$${solution}\:{followed} \\ $$$${solve} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$$${solution} \\ $$$${y}=\mathrm{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)\:\:\:{and}\:\:{dy}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx} \\ $$$${at}\:{x}=\mathrm{0},{y}=\mathrm{0}\:\:{and}\:\:{at}\:\:{x}=\mathrm{1},{y}=\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$${hence} \\ $$$${I}=\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} \frac{{y}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}×\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }{dy}=\int_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} {ydy} \\ $$$${I}=\left[\frac{{y}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{0}} ^{\mathrm{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} =\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$$$\because\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left({x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right)}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{\mathrm{2}}\right) \\ $$
Commented by mathdave last updated on 29/Aug/20
why did you mark it red  .what is that  suppose  to mean
$${why}\:{did}\:{you}\:{mark}\:{it}\:{red}\:\:.{what}\:{is}\:{that} \\ $$$${suppose}\:\:{to}\:{mean} \\ $$
Commented by Her_Majesty last updated on 30/Aug/20
I didn′t mark it red but I can tell you the  reason someone did:  we have 3 options to post  (1) questions  (2) answers  (3) comments    (1) is to post questions  (2) is to post answers  (3) is to post comments    do not post questions in (2) or (3)  do not post answers in (1) or (3)  do not post comments in (1) or (2)    it′s easy, isn′t it?
$${I}\:{didn}'{t}\:{mark}\:{it}\:{red}\:{but}\:{I}\:{can}\:{tell}\:{you}\:{the} \\ $$$${reason}\:{someone}\:{did}: \\ $$$${we}\:{have}\:\mathrm{3}\:{options}\:{to}\:{post} \\ $$$$\left(\mathrm{1}\right)\:{questions} \\ $$$$\left(\mathrm{2}\right)\:{answers} \\ $$$$\left(\mathrm{3}\right)\:{comments} \\ $$$$ \\ $$$$\left(\mathrm{1}\right)\:{is}\:{to}\:{post}\:{questions} \\ $$$$\left(\mathrm{2}\right)\:{is}\:{to}\:{post}\:{answers} \\ $$$$\left(\mathrm{3}\right)\:{is}\:{to}\:{post}\:{comments} \\ $$$$ \\ $$$${do}\:{not}\:{post}\:{questions}\:{in}\:\left(\mathrm{2}\right)\:{or}\:\left(\mathrm{3}\right) \\ $$$${do}\:{not}\:{post}\:{answers}\:{in}\:\left(\mathrm{1}\right)\:{or}\:\left(\mathrm{3}\right) \\ $$$${do}\:{not}\:{post}\:{comments}\:{in}\:\left(\mathrm{1}\right)\:{or}\:\left(\mathrm{2}\right) \\ $$$$ \\ $$$${it}'{s}\:{easy},\:{isn}'{t}\:{it}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *