Menu Close

sove-sin-2-x-y-cosx-y-x-




Question Number 85165 by mathmax by abdo last updated on 19/Mar/20
sove  (sin^2 x) y^′   +(cosx)y =x
$${sove}\:\:\left({sin}^{\mathrm{2}} {x}\right)\:{y}^{'} \:\:+\left({cosx}\right){y}\:={x} \\ $$
Commented by mathmax by abdo last updated on 20/Mar/20
(he)→(sin^2 x)y^′  +(cosx)y =0 ⇒(y^′ /y) =−((cosx)/(sin^2 x)) ⇒  ln∣y∣ =(1/(sinx)) +k ⇒y(x)=C e^(1/(sinx))    let use mvc method  y^′ (x)=C^′  e^(1/(sinx))  +C(−((cosx)/(sin^2 x)))e^(1/(sinx))   (e) ⇒C^′  sin^2 x e^(1/(sinx))  −C cosx e^(1/(sinx))  +C cosx e^(1/(sinx))  =x ⇒  C^′  =(x/(sin^2 x))e^(−(1/(sinx)))  ⇒C(x) = ∫^x (u/(sin^2 u)) e^(−(1/(sinu)))  du  +λ ⇒  y(x) =(∫^x  (u/(sin^2 u))e^(−(1/(sinu))) du +λ)e^(1/(sinx))  is the general[solution
$$\left({he}\right)\rightarrow\left({sin}^{\mathrm{2}} {x}\right){y}^{'} \:+\left({cosx}\right){y}\:=\mathrm{0}\:\Rightarrow\frac{{y}^{'} }{{y}}\:=−\frac{{cosx}}{{sin}^{\mathrm{2}} {x}}\:\Rightarrow \\ $$$${ln}\mid{y}\mid\:=\frac{\mathrm{1}}{{sinx}}\:+{k}\:\Rightarrow{y}\left({x}\right)={C}\:{e}^{\frac{\mathrm{1}}{{sinx}}} \:\:\:{let}\:{use}\:{mvc}\:{method} \\ $$$${y}^{'} \left({x}\right)={C}^{'} \:{e}^{\frac{\mathrm{1}}{{sinx}}} \:+{C}\left(−\frac{{cosx}}{{sin}^{\mathrm{2}} {x}}\right){e}^{\frac{\mathrm{1}}{{sinx}}} \\ $$$$\left({e}\right)\:\Rightarrow{C}^{'} \:{sin}^{\mathrm{2}} {x}\:{e}^{\frac{\mathrm{1}}{{sinx}}} \:−{C}\:{cosx}\:{e}^{\frac{\mathrm{1}}{{sinx}}} \:+{C}\:{cosx}\:{e}^{\frac{\mathrm{1}}{{sinx}}} \:={x}\:\Rightarrow \\ $$$${C}\:^{'} \:=\frac{{x}}{{sin}^{\mathrm{2}} {x}}{e}^{−\frac{\mathrm{1}}{{sinx}}} \:\Rightarrow{C}\left({x}\right)\:=\:\int^{{x}} \frac{{u}}{{sin}^{\mathrm{2}} {u}}\:{e}^{−\frac{\mathrm{1}}{{sinu}}} \:{du}\:\:+\lambda\:\Rightarrow \\ $$$${y}\left({x}\right)\:=\left(\int^{{x}} \:\frac{{u}}{{sin}^{\mathrm{2}} {u}}{e}^{−\frac{\mathrm{1}}{{sinu}}} {du}\:+\lambda\right){e}^{\frac{\mathrm{1}}{{sinx}}} \:{is}\:{the}\:{general}\left[{solution}\right. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *