Menu Close

sove-the-de-x-2-y-2x-3-y-sin-x-2-with-y-1-2-and-y-1-1-




Question Number 63894 by mathmax by abdo last updated on 10/Jul/19
sove the (de) x^2 y^′  −(2x+3)y =sin(x^2 )  with y(1)=2 and  y^′ (1)=1 .
sovethe(de)x2y(2x+3)y=sin(x2)withy(1)=2andy(1)=1.
Commented by mathmax by abdo last updated on 11/Jul/19
(he) →x^2 y^′ −(2x+3)y=0 ⇒x^2 y^′  =(2x+3)y ⇒  (y^′ /y) =((2x+3)/x^2 ) =(2/x) +(3/x^2 ) ⇒ln∣y∣=2ln∣x∣−(3/x)+c ⇒  y =K x^2  e^(−(3/x))    let use mvc method   y^′  =K^′ x^2  e^(−(3/x))  +K{ 2x e^(−(3/x))  +x^2 (3/x^2 ) e^(−(3/x)) }  =K^′  x^2  e^(−(3/(x )))  +K{2x+3}e^(−(3/x))   (e) ⇒K^′ x^4  e^(−(3/x))   +Kx^2 (2x+3)e^(−(3/x))  −(2x+3)Kx^2  e^(−(3/x))  =sin(x^2 ) ⇒  K^′  x^4  e^(−(3/x))  =sin(x^2 ) ⇒K^′  =((sin(x^2 )e^(3/x) )/x^4 ) ⇒  K(x) =∫_1 ^x    ((sin(t^2 )e^(3/t) )/t^4 )dt  +λ  λ=K(1) we have y(1)=K(1)e^(−3)  ⇒K(1)=e^3 y(1) ⇒  K(x) =∫_1 ^x   ((sin(t^2 )e^(3/t) )/t^4 )dt  +2e^3  ⇒  y(x) =x^2  e^(−(3/x)) { ∫_1 ^x   ((e^(3/t)  sin(t^2 ))/t^4 )dt +2e^3 }....
(he)x2y(2x+3)y=0x2y=(2x+3)yyy=2x+3x2=2x+3x2lny∣=2lnx3x+cy=Kx2e3xletusemvcmethody=Kx2e3x+K{2xe3x+x23x2e3x}=Kx2e3x+K{2x+3}e3x(e)Kx4e3x+Kx2(2x+3)e3x(2x+3)Kx2e3x=sin(x2)Kx4e3x=sin(x2)K=sin(x2)e3xx4K(x)=1xsin(t2)e3tt4dt+λλ=K(1)wehavey(1)=K(1)e3K(1)=e3y(1)K(x)=1xsin(t2)e3tt4dt+2e3y(x)=x2e3x{1xe3tsin(t2)t4dt+2e3}.

Leave a Reply

Your email address will not be published. Required fields are marked *