STATEMENT-1-The-locus-of-z-if-arg-z-1-z-1-pi-2-is-a-circle-and-STATEMENT-2-z-2-z-2-pi-2-then-the-locus-of-z-is-a-circle- Tinku Tara June 4, 2023 Others 0 Comments FacebookTweetPin Question Number 21109 by Tinkutara last updated on 13/Sep/17 STATEMENT−1:Thelocusofz,ifarg(z−1z+1)=π2isacircle.andSTATEMENT−2:∣z−2z+2∣=π2,thenthelocusofzisacircle. Commented by youssoufab last updated on 13/Sep/17 arg(z−1z+1)=π2⇔arg(z−1z+1)=arg(i)⇔z−1z+1≡i[2π]⇔z−1≡(z+1)i[2π]⇔z−1≡zi+i[2π]⇔z(1−i)≡i+1[2π]⇔z≡i+11−i[2π]⇔z≡(i+1)2(1−i)(i+1)[2π]⇔z≡−1+2i+11+1[2π]⇔z≡i[2π]zisacercle⇒z=i Commented by Tinkutara last updated on 13/Sep/17 Locusofzwillnotbeacompletecircle,butwhyitisnot,ismydoubt. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-cos-2ch-x-x-2-9-dx-Next Next post: STATEMENT-1-z-1-2-z-2-2-z-3-2-z-4-2-0-where-z-1-z-2-z-3-and-z-4-are-the-fourth-roots-of-unity-and-STATEMENT-2-1-1-4-cos0-i-sin0-1-4- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.