Menu Close

STATEMENT-1-The-locus-of-z-if-arg-z-1-z-1-pi-2-is-a-circle-and-STATEMENT-2-z-2-z-2-pi-2-then-the-locus-of-z-is-a-circle-




Question Number 21109 by Tinkutara last updated on 13/Sep/17
STATEMENT-1 : The locus of z, if  arg(((z − 1)/(z + 1))) = (π/2) is a circle.  and  STATEMENT-2 : ∣((z − 2)/(z + 2))∣ = (π/2), then  the locus of z is a circle.
STATEMENT1:Thelocusofz,ifarg(z1z+1)=π2isacircle.andSTATEMENT2:z2z+2=π2,thenthelocusofzisacircle.
Commented by youssoufab last updated on 13/Sep/17
arg(((z−1)/(z+1)))=(π/2)  ⇔arg(((z−1)/(z+1)))=arg(i)  ⇔((z−1)/(z+1))≡i[2π]  ⇔z−1≡(z+1)i[2π]  ⇔z−1≡zi+i[2π]  ⇔z(1−i)≡i+1[2π]  ⇔z≡((i+1)/(1−i))[2π]  ⇔z≡(((i+1)^2 )/((1−i)(i+1)))[2π]  ⇔z≡((−1+2i+1)/(1+1))[2π]  ⇔z≡i[2π]  z is a cercle⇒z=i
arg(z1z+1)=π2arg(z1z+1)=arg(i)z1z+1i[2π]z1(z+1)i[2π]z1zi+i[2π]z(1i)i+1[2π]zi+11i[2π]z(i+1)2(1i)(i+1)[2π]z1+2i+11+1[2π]zi[2π]zisacerclez=i
Commented by Tinkutara last updated on 13/Sep/17
Locus of z will not be a complete circle,  but why it is not, is my doubt.
Locusofzwillnotbeacompletecircle,butwhyitisnot,ismydoubt.

Leave a Reply

Your email address will not be published. Required fields are marked *