Menu Close

studie-and-give-the-graph-for-the-function-f-x-e-x-x-e-




Question Number 28138 by abdo imad last updated on 21/Jan/18
studie and?give the graph for the function  f(x)= e^x   −x^e      .
studieand?givethegraphforthefunctionf(x)=exxe.
Commented by abdo imad last updated on 26/Jan/18
we have f(x)= e^x  −e^(elnx)   ⇒ D_f =]0,+∝[  lim_(x→0^+ ) f(x)= 1   and lim_(x→+∞) f(x)=lim_(x→+∞) e^x ( 1−e^(−x+elnx) )  =lim_(x→+∞)  e^x (1 −e^(−x(1−((elnx)/x))) )=lim _(x→+∞^ )   e^x =+∞  lim_(x→+∞)  ((f(x))/x)= lim_(x→+∞)  (e^x /x) − x^(e−1)   =lim_(x→+∞)   (e^x /x)( 1− e^(−x) x^e )=lim_(x→+∞)  (e^x /x) =+∞ so the graph   of f have a parabolic diction at +∞  f^′ (x)= e^x  − e x^(e−1)  = e^x  (1− e^(−x+1)  e^((e−1)lnx) )  = e^x ( 1−e^(−x+1 +(e−1)lnx) ) the sine off^′ (x) is thesine of  ψ(x)= 1− e^((e−1)lnx −x+1)   ψ^′ (x)= −( ((e−1)/x) −1) e^((...))  =−( ((e−1−x)/x))e^((...))   =((x−(e−1))/x) e^((...))    and  ψ^′ (x)=0 ⇔  x=e−1 and  f^′ (e−1)=e^(e−1) (1− e^(−e+2)  e^((e−1)ln(e−1)) ).....
wehavef(x)=exeelnxDf=]0,+[limx0+f(x)=1andlimx+f(x)=limx+ex(1ex+elnx)=limx+ex(1ex(1elnxx))=limx+ex=+limx+f(x)x=limx+exxxe1=limx+exx(1exxe)=limx+exx=+sothegraphoffhaveaparabolicdictionat+f(x)=exexe1=ex(1ex+1e(e1)lnx)=ex(1ex+1+(e1)lnx)thesineoff(x)isthesineofψ(x)=1e(e1)lnxx+1ψ(x)=(e1x1)e()=(e1xx)e()=x(e1)xe()andψ(x)=0x=e1andf(e1)=ee1(1ee+2e(e1)ln(e1))..

Leave a Reply

Your email address will not be published. Required fields are marked *