Menu Close

Studies-of-convergences-the-numbers-real-sequence-x-n-with-x-1-1-and-x-n-1-x-n-2-2-2x-n-n-1-




Question Number 55641 by gunawan last updated on 01/Mar/19
Studies of convergences  the numbers real sequence {x_n },  with x_1 =1 and x_(n+1) =((x_n ^2 +2)/(2x_n )), n≥1
Studiesofconvergencesthenumbersrealsequence{xn},withx1=1andxn+1=xn2+22xn,n1
Commented by maxmathsup by imad last updated on 01/Mar/19
we have x_(n+1) =f(x_n ) with f(x)=((x^2  +2)/(2x)) =(x/2) +(1/x)  with x>0  we havef^′ (x)=(1/2)−(1/x^2 ) =((x^2 −2)/(2x^2 ))    and f^′ (x)=0  ⇔x =+^− (√2)  x              0                 (√2)             +∞  f^′ (x)               −                +  f(x)       +∞ deccf((√2))  incre  +∞  f((√2)) =(1/( (√2))) +(1/( (√2))) =(√2)  f is continue on ]0,+∞[     let find the fix point  f(x)=x ⇔(x/2) +(1/x) =x ⇔(1/x) =(x/2) ⇒2=x^2  ⇒x =(√2)    because x >0  (x_n ) is convergent  and lim_(n→+∞) x_n =(√2).
wehavexn+1=f(xn)withf(x)=x2+22x=x2+1xwithx>0wehavef(x)=121x2=x222x2andf(x)=0x=+2x02+f(x)+f(x)+deccf(2)incre+f(2)=12+12=2fiscontinueon]0,+[letfindthefixpointf(x)=xx2+1x=x1x=x22=x2x=2becausex>0(xn)isconvergentandlimn+xn=2.

Leave a Reply

Your email address will not be published. Required fields are marked *