Menu Close

study-and-give-the-graph-for-the-function-f-x-x-x-1-e-1-x-




Question Number 40106 by maxmathsup by imad last updated on 15/Jul/18
study and give the graph for the function  f(x)= (x/(x−1)) e^(1/x)
studyandgivethegraphforthefunctionf(x)=xx1e1x
Answered by math khazana by abdo last updated on 28/Jul/18
D_f =R−{0,1} =]−∞,0[∪]0,1[∪]1,+∞[    lim_(x→−∞) f(x)=lim_(x→−∞) (x/(x−1))e^(1/x)  =1  y=1 is assymtote at −∞  lim_(x→+∞)  f(x)=lim_(x→+∞)  (x/(x−1)) e^(1/x)  =1 so  y=1 is assymptote at+∞  lim_(x→1^− )   f(x)  =−∞  and lim_(x→1^+ )   f(x)= +∞  lim_(x→0^+ )    f(x)=lim_(x→0^+ )    (x/(x−1)) e^(1/x)  chang=(1/x)=t  =lim_(t→+∞)      (1/(t((1/t)−1))) e^t =lim_(t→+∞)  (1/(1−t)) e^t     =lim_(t→+∞)    (e^t /t) (1/((1/t)−1)) =−∞  lim_(x→0^− )    f(x) =lim_(x→0^− )    (x/(x−1)) e^(1/x) (ch.(1/x)=t)  =lim_(t→−∞)     (1/(t((1/t)−1))) e^t  =lim_(t→−∞) −(e^t /t)=0  we have f^′ (x)=((x/(x−1)))^′ e^(1/x)  +((x/(x−1)))(e^(1/x) )^′   =    −(1/((x−1)^2 )) e^(1/x)  −(1/x^2 )((x/(x−1)))e^(1/x)   =−(1/((x−1)^2 )) e^(1/x)  − (1/(x(x−1))) e^(1/x)   =−(1/((x−1))) e^(1/x) { (1/x) +1} =−((x+1)/x)(1/((x−1)))e^(1/x)   =−((x+1)/(x(x−1))) e^(1/x)    ....be continued...
Df=R{0,1}=],0[]0,1[]1,+[limxf(x)=limxxx1e1x=1y=1isassymtoteatlimx+f(x)=limx+xx1e1x=1soy=1isassymptoteat+limx1f(x)=andlimx1+f(x)=+limx0+f(x)=limx0+xx1e1xchang=1x=t=limt+1t(1t1)et=limt+11tet=limt+ett11t1=limx0f(x)=limx0xx1e1x(ch.1x=t)=limt1t(1t1)et=limtett=0wehavef(x)=(xx1)e1x+(xx1)(e1x)=1(x1)2e1x1x2(xx1)e1x=1(x1)2e1x1x(x1)e1x=1(x1)e1x{1x+1}=x+1x1(x1)e1x=x+1x(x1)e1x.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *