Menu Close

Study-f-x-n-1-x-n-sin-nx-n-Find-out-n-1-1-n-sin-n-n-and-n-1-sin-n-n-




Question Number 79126 by ~blr237~ last updated on 22/Jan/20
Study   f(x)=Σ_(n=1) ^∞  ((x^n sin(nx))/n)  Find out Σ_(n=1) ^∞ (−1)^n  ((sin(n))/n)   and   Σ_(n=1) ^∞ ((sin(n))/n)
Studyf(x)=n=1xnsin(nx)nFindoutn=1(1)nsin(n)nandn=1sin(n)n
Commented by mathmax by abdo last updated on 25/Jan/20
let s(x)=Σ_(n=1) ^∞  ((sin(nx))/n)      we have s(x)=Im(Σ_(n=1) ^∞  (e^(inx) /n))  let w(x)=Σ_(n=1) ^∞  (e^(inx) /n) ⇒w^′ (x)=Σ_(n=1) ^∞ ((in e^(inx) )/n)  =i Σ_(n=1) ^∞  (e^(ix) )^n  =i{ Σ_(n=0) ^∞  (e^(ix) )^n −1}  =i{(1/(1−e^(ix) ))−1} =i{ (1/(1−cosx −isinx))−1}  =i{((1−cosx +isinx)/((1−cosx)^2 +sin^2 x))−1} =i(((1−cosx)/((1−cosx)^2  +sin^2 x)))−((sinx)/((1−cosx)^2  +sin^2 x))−i  =i(((1−cosx)/(2−2cosx))−1)−((sinx)/(2−2cosx)) =−(i/2)−((sinx)/(4sin^2 ((x/2))))  =−(i/2)−((cos((x/2)))/(2sin((x/2)))) ⇒w(x)=−((ix)/2)−(1/2)∫((cos((x/2)))/(sin((x/2))))dx+c  ((x/2)=t)  w(x)=−((ix)/2)−∫  ((cost)/(sint))dt =−i(x/2)−ln∣sin((x/2))∣+c  w(π)=Σ_(n=1) ^∞  (((−1)^n )/n) =−ln(2)=−((iπ)/2) +c ⇒c =−ln(2)+((iπ)/2) ⇒  w(x)=−((ix)/2)−ln∣sin((x/2))∣−ln(2)+((iπ)/2) =−ln(2 sin((x/2))∣+i((π−x)/2)  Im(w(x) =((π−x)/2) =s(x)  x=1 ⇒Σ_(n=1) ^∞  ((sin(n))/n) =((π−1)/2)
lets(x)=n=1sin(nx)nwehaves(x)=Im(n=1einxn)letw(x)=n=1einxnw(x)=n=1ineinxn=in=1(eix)n=i{n=0(eix)n1}=i{11eix1}=i{11cosxisinx1}=i{1cosx+isinx(1cosx)2+sin2x1}=i(1cosx(1cosx)2+sin2x)sinx(1cosx)2+sin2xi=i(1cosx22cosx1)sinx22cosx=i2sinx4sin2(x2)=i2cos(x2)2sin(x2)w(x)=ix212cos(x2)sin(x2)dx+c(x2=t)w(x)=ix2costsintdt=ix2lnsin(x2)+cw(π)=n=1(1)nn=ln(2)=iπ2+cc=ln(2)+iπ2w(x)=ix2lnsin(x2)ln(2)+iπ2=ln(2sin(x2)+iπx2Im(w(x)=πx2=s(x)x=1n=1sin(n)n=π12
Commented by mathmax by abdo last updated on 25/Jan/20
f(x)=Im(Σ_(n=1) ^∞  ((e^(inx)  x^n )/n)) let   ϕ(x)=Σ_(n=1) ^∞  ((e^(inx)  x^n )/n) ⇒ϕ(x)=Σ_(n=1) ^∞  (((xe^(ix) )^n )/n) =Σ_(n=1) ^∞  (z^n /n)  with z =x e^(ix)    for ∣z∣=∣x∣≤  wr get  (d/dz)(Σ (z^n /n)) =Σ_(n=1) ^∞  z^(n−1) =Σ_(n=0) ^∞  z^n  =(1/(1−z)) ⇒Σ_(n=1) ^∞  (z^n /n) =−ln(1−z)  −ln(1−xe^(ix) ) =−ln(1−x(cosx +isinx))  =−ln(1−xcosx −ixsinx)  we hsve  ∣1−xcosx−ixsinx∣ =(√((1−xcosx)^2 +x^2  sin^2 x))  =(√(1−2xcosx +x^2  )) ⇒1−xcosx −ixsinx  =(√(x^2 −2x cosx +1))e^(isrctan(((−xsinx)/(1−xcosx))))  ⇒  −ln(...) =−(1/2)ln(x^2 −2x cosx +1)+i arctan(((xsinx)/(1−xcosx)))  f(x) =Im(ϕ(x)) =arctan(((xsinx)/(1−x cosx)))  x=−1 ⇒Σ_(n=1) ^∞  (((−1)^n )/n)sin(n) =arctan(((sin(1))/(1+cos(1))))  =arctan(((2sin((1/2))cos((1/2)))/(2cos^2 ((1/2))))) =(1/2)
f(x)=Im(n=1einxxnn)letφ(x)=n=1einxxnnφ(x)=n=1(xeix)nn=n=1znnwithz=xeixforz∣=∣x∣⩽wrgetddz(Σznn)=n=1zn1=n=0zn=11zn=1znn=ln(1z)ln(1xeix)=ln(1x(cosx+isinx))=ln(1xcosxixsinx)wehsve1xcosxixsinx=(1xcosx)2+x2sin2x=12xcosx+x21xcosxixsinx=x22xcosx+1eisrctan(xsinx1xcosx)ln()=12ln(x22xcosx+1)+iarctan(xsinx1xcosx)f(x)=Im(φ(x))=arctan(xsinx1xcosx)x=1n=1(1)nnsin(n)=arctan(sin(1)1+cos(1))=arctan(2sin(12)cos(12)2cos2(12))=12
Answered by mind is power last updated on 23/Jan/20
if ∣x∣>1  lim_(n→∞) ((x^n sin(nx))/n),did′nt existe  ⇒x∈[−1,1]  x=1  we use abel lemma  since (1/n) decrease in zero  Σ_(n≥1) sin(n)=ImΣ_(N≥n≥1) e^(in) =Ime^i (((1−e^(i(N+1)) )/(1−e^i )))  =Im(e^(i/2) (((e^(i((N+1)/2)) sin(((N+1)/2)))/(sin((1/2))))))  =((sin(((N+2)/2))sin(((N+1)/2)))/(sin((1/2))))⇒∣Σsin(n)∣≤(1/(∣sin((1/2))∣))  by abel Σ_(n≥1) ((sin(n))/n)  cv  for −1,  Σ_(n≥1) (((−1)^n sin(n))/n)  sam ∣Σ(−1)^n sin(n)∣<∞,(1/n) decrease →0  cv  for x∈[−a,a]  ,0≤a<1  f(x)≤Σ_(n≥1) ((∣x∣^n )/n)=−ln(1−∣x∣)  evident    f is well defind in [−1,1]  f(x)=Σ((x^n sin(n))/n)=Σ(x^n /n)Im(e^(in) )  =ImΣ((x^n e^(in) )/n)=ImΣ(((xe^i )^n )/n)=Im{−ln(1−xe^i )}  =Im{−ln(1−xcos(1)−ixsin(1))  1−xcos(1)−ixsin(1)=(√(1+x^2 −2xcos(1)))e^(i(arctan(((−xsin(1))/(1−xcos(1)))))   ln(1−xe^i )=ln((√(1+x^2 −2xcos(1))))+i(arctan(((−xsin(1))/(1−xcos(1)))))  Im{−ln(1−xe^i )}=−arctan(((−xsin(1))/(1−xcos(1))))=arctan(((xsin(1))/(1−xcos(1))))  f(1)=Σ_(n≥1) ((sin(n))/n)=arctan(((sin(1))/(1−cos(1))))=arctan(((2sin((1/2))cos((1/2)))/(2sin^2 ((1/2)))))  =arctan(tan((π/2)−(1/2)))=((π−1)/2)  f(−1)=Σ_(n≥1) (((−1)^n sin(n))/n)=arctan(((−sin(1))/(1+cos(1))))=−arctan(tg((1/2)))  =−(1/2)
ifx∣>1limnxnsin(nx)n,didntexistex[1,1]x=1weuseabellemmasince1ndecreaseinzeron1sin(n)=ImNn1ein=Imei(1ei(N+1)1ei)=Im(ei2(eiN+12sin(N+12)sin(12)))=sin(N+22)sin(N+12)sin(12)⇒∣Σsin(n)∣⩽1sin(12)byabeln1sin(n)ncvfor1,n1(1)nsin(n)nsamΣ(1)nsin(n)∣<,1ndecrease0cvforx[a,a],0a<1f(x)n1xnn=ln(1x)evidentfiswelldefindin[1,1]f(x)=Σxnsin(n)n=ΣxnnIm(ein)=ImΣxneinn=ImΣ(xei)nn=Im{ln(1xei)}=Im{ln(1xcos(1)ixsin(1))1xcos(1)ixsin(1)=1+x22xcos(1)ei(arctan(xsin(1)1xcos(1))ln(1xei)=ln(1+x22xcos(1))+i(arctan(xsin(1)1xcos(1)))Im{ln(1xei)}=arctan(xsin(1)1xcos(1))=arctan(xsin(1)1xcos(1))f(1)=n1sin(n)n=arctan(sin(1)1cos(1))=arctan(2sin(12)cos(12)2sin2(12))=arctan(tan(π212))=π12f(1)=n1(1)nsin(n)n=arctan(sin(1)1+cos(1))=arctan(tg(12))=12

Leave a Reply

Your email address will not be published. Required fields are marked *