Study-f-x-n-1-x-n-sin-nx-n-Find-out-n-1-1-n-sin-n-n-and-n-1-sin-n-n- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 79126 by ~blr237~ last updated on 22/Jan/20 Studyf(x)=∑∞n=1xnsin(nx)nFindout∑∞n=1(−1)nsin(n)nand∑∞n=1sin(n)n Commented by mathmax by abdo last updated on 25/Jan/20 lets(x)=∑n=1∞sin(nx)nwehaves(x)=Im(∑n=1∞einxn)letw(x)=∑n=1∞einxn⇒w′(x)=∑n=1∞ineinxn=i∑n=1∞(eix)n=i{∑n=0∞(eix)n−1}=i{11−eix−1}=i{11−cosx−isinx−1}=i{1−cosx+isinx(1−cosx)2+sin2x−1}=i(1−cosx(1−cosx)2+sin2x)−sinx(1−cosx)2+sin2x−i=i(1−cosx2−2cosx−1)−sinx2−2cosx=−i2−sinx4sin2(x2)=−i2−cos(x2)2sin(x2)⇒w(x)=−ix2−12∫cos(x2)sin(x2)dx+c(x2=t)w(x)=−ix2−∫costsintdt=−ix2−ln∣sin(x2)∣+cw(π)=∑n=1∞(−1)nn=−ln(2)=−iπ2+c⇒c=−ln(2)+iπ2⇒w(x)=−ix2−ln∣sin(x2)∣−ln(2)+iπ2=−ln(2sin(x2)∣+iπ−x2Im(w(x)=π−x2=s(x)x=1⇒∑n=1∞sin(n)n=π−12 Commented by mathmax by abdo last updated on 25/Jan/20 f(x)=Im(∑n=1∞einxxnn)letφ(x)=∑n=1∞einxxnn⇒φ(x)=∑n=1∞(xeix)nn=∑n=1∞znnwithz=xeixfor∣z∣=∣x∣⩽wrgetddz(Σznn)=∑n=1∞zn−1=∑n=0∞zn=11−z⇒∑n=1∞znn=−ln(1−z)−ln(1−xeix)=−ln(1−x(cosx+isinx))=−ln(1−xcosx−ixsinx)wehsve∣1−xcosx−ixsinx∣=(1−xcosx)2+x2sin2x=1−2xcosx+x2⇒1−xcosx−ixsinx=x2−2xcosx+1eisrctan(−xsinx1−xcosx)⇒−ln(…)=−12ln(x2−2xcosx+1)+iarctan(xsinx1−xcosx)f(x)=Im(φ(x))=arctan(xsinx1−xcosx)x=−1⇒∑n=1∞(−1)nnsin(n)=arctan(sin(1)1+cos(1))=arctan(2sin(12)cos(12)2cos2(12))=12 Answered by mind is power last updated on 23/Jan/20 if∣x∣>1limn→∞xnsin(nx)n,did′ntexiste⇒x∈[−1,1]x=1weuseabellemmasince1ndecreaseinzero∑n⩾1sin(n)=Im∑N⩾n⩾1ein=Imei(1−ei(N+1)1−ei)=Im(ei2(eiN+12sin(N+12)sin(12)))=sin(N+22)sin(N+12)sin(12)⇒∣Σsin(n)∣⩽1∣sin(12)∣byabel∑n⩾1sin(n)ncvfor−1,∑n⩾1(−1)nsin(n)nsam∣Σ(−1)nsin(n)∣<∞,1ndecrease→0cvforx∈[−a,a],0⩽a<1f(x)⩽∑n⩾1∣x∣nn=−ln(1−∣x∣)evidentfiswelldefindin[−1,1]f(x)=Σxnsin(n)n=ΣxnnIm(ein)=ImΣxneinn=ImΣ(xei)nn=Im{−ln(1−xei)}=Im{−ln(1−xcos(1)−ixsin(1))1−xcos(1)−ixsin(1)=1+x2−2xcos(1)ei(arctan(−xsin(1)1−xcos(1))ln(1−xei)=ln(1+x2−2xcos(1))+i(arctan(−xsin(1)1−xcos(1)))Im{−ln(1−xei)}=−arctan(−xsin(1)1−xcos(1))=arctan(xsin(1)1−xcos(1))f(1)=∑n⩾1sin(n)n=arctan(sin(1)1−cos(1))=arctan(2sin(12)cos(12)2sin2(12))=arctan(tan(π2−12))=π−12f(−1)=∑n⩾1(−1)nsin(n)n=arctan(−sin(1)1+cos(1))=−arctan(tg(12))=−12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Solve-on-R-R-the-following-system-9-A-9-B-9-C-1-3-A-3-B-3-C-3-Next Next post: Find-out-0-1-ln-1-t-t-2-dt-Then-deduce-the-value-of-A-n-1-1-n-n-1-2n-1-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.