Menu Close

study-tbe-convergence-of-n-1-nln-1-n-




Question Number 127778 by Bird last updated on 02/Jan/21
study tbe convergence of  Σ_n ^∞ (1/(nln(1+n)))
studytbeconvergenceofn1nln(1+n)
Answered by mnjuly1970 last updated on 02/Jan/21
Σ_(n=1) ^∞ (1/(nln(n+1))) ≥Σ_(n=1) ^∞ (1/((n+1)ln(n+1)))  =Σ_(n=2) ^∞ (1/(nln(n))) ≈_(theorem) ^(cauchy density)  Σ_(k=1) ^∞ (2^k /(2^k ln(2^k )))  = (1/(log(2)))Σ_(k=1) ^∞ (1/k) →∞   harmonic series  is divergent..   then  the orginal seies  is divergent...  comparison test...
n=11nln(n+1)n=11(n+1)ln(n+1)=n=21nln(n)cauchydensitytheoremk=12k2kln(2k)=1log(2)k=11kharmonicseriesisdivergent..thentheorginalseiesisdivergentcomparisontest
Answered by mindispower last updated on 02/Jan/21
f:x→xln(1+x) positiv increase function  ∫_1 ^∞ f(x)dx and Σ(1/(nln(1+n))) sam nature  ∫_1 ^∞ (1/(xln(1+x)))dx= By part [((ln(x))/(ln(1+x)))]_1 ^∞ −∫_1 ^∞ ((ln(x))/((1+x)ln^2 (1+x)))  when x→∞  ((ln(x))/((1+x)ln^2 (1+x)))∼(1/((1+x)ln(1+x)))  x→(1/((1+x)ln(1+x))) not cv in+∞  ∫(dx/((1+x)ln(1+x)))=ln(ln(1+x)→∞  ⇒Σ(1/(nln(1+n))) Dv
f:xxln(1+x)positivincreasefunction1f(x)dxandΣ1nln(1+n)samnature11xln(1+x)dx=Bypart[ln(x)ln(1+x)]11ln(x)(1+x)ln2(1+x)whenxln(x)(1+x)ln2(1+x)1(1+x)ln(1+x)x1(1+x)ln(1+x)notcvin+dx(1+x)ln(1+x)=ln(ln(1+x)Σ1nln(1+n)Dv

Leave a Reply

Your email address will not be published. Required fields are marked *