Menu Close

study-the-convergence-of-0-1-1-x-x-dx-




Question Number 34221 by abdo imad last updated on 03/May/18
study the convergence of ∫_0 ^1   ((√(1−x))/x) dx .
studytheconvergenceof011xxdx.
Commented by math khazana by abdo last updated on 04/May/18
let put x= sin^2 θ  ⇒ I = ∫_0 ^(π/2)  ((cosθ)/(sin^2 θ)) .2sinθ cosθ dθ  = ∫_0 ^(π/2)   ((2cos^2 θ)/(sinθ)) dθ = 2 ∫_0 ^(π/2)  ((1−sin^2 θ)/(sinθ))dθ  = 2 ∫_0 ^(π/2)   (dθ/(sinθ))  −2 ∫_0 ^(π/2)  sinθ dθ  but we have  ∫_0 ^(π/2)  sinθ dθ= [−cosθ]_0 ^(π/2) =1  and ch. tan((θ/2))=x give   ∫_ξ ^(π/2)    (dθ/(sinθ)) = ∫_ξ ^(π/4)    (1/((2x)/(1+x^2 ))) ((2dx)/(1+x^2 )) = ∫_ξ ^(π/4)   (dx/x)  =ln((π/4)) −lnξ   so lim_(ξ→0^+ )    ∫_ξ ^(π/4)    (dθ/(sinθ)) = +∞  ⇒ I is divergent.
letputx=sin2θI=0π2cosθsin2θ.2sinθcosθdθ=0π22cos2θsinθdθ=20π21sin2θsinθdθ=20π2dθsinθ20π2sinθdθbutwehave0π2sinθdθ=[cosθ]0π2=1andch.tan(θ2)=xgiveξπ2dθsinθ=ξπ412x1+x22dx1+x2=ξπ4dxx=ln(π4)lnξsolimξ0+ξπ4dθsinθ=+Iisdivergent.
Answered by Joel578 last updated on 03/May/18
I = lim_(t→0^+ )  (∫_t ^1  ((√(1 − x))/x) dx)    ∫_t ^1  ((√(1 − x))/x) dx  (u = (√(1− x))  →  du = −(1/(2u)) dx)  = −∫_(√(1−t)) ^0  ((2u^2 )/(1 − u^2 )) du = 2∫_(√(1−t)) ^0  (u^2 /(u^2  − 1)) du  = 2 ∫_(√(1−t)) ^0   (1 + (1/(u^2  − 1))) du  = 2 ∫_(√(1−t)) ^0  (1 + (1/(2(u − 1))) − (1/(2(u + 1)))) du  = 2 [u + (1/2) ln (((u − 1)/(u + 1)))]_(√(1−t)) ^0   = 2[0  + (1/2) ln (−1) − (√(1−t)) − (1/2) ln ((((√(1−t)) − 1)/( (√(1−t)) + 1)))]  = iπ − 2(√(1−t)) − ln ((((√(1−t)) − 1)/( (√(1−t)) + 1)))    I = lim_(t→0^+ )   [iπ − 2(√(1−t)) − ln ((((√(1−t)) − 1)/( (√(1−t)) + 1)))]      = iπ − 2 − ln 0      = ∞  The integral doesnt converge
I=limt0+(t11xxdx)t11xxdx(u=1xdu=12udx)=1t02u21u2du=21t0u2u21du=21t0(1+1u21)du=21t0(1+12(u1)12(u+1))du=2[u+12ln(u1u+1)]1t0=2[0+12ln(1)1t12ln(1t11t+1)]=iπ21tln(1t11t+1)I=limt0+[iπ21tln(1t11t+1)]=iπ2ln0=Theintegraldoesntconverge
Commented by math khazana by abdo last updated on 04/May/18
sir joel from where come the complex iπ  the  integral is real....
sirjoelfromwherecomethecomplexiπtheintegralisreal.

Leave a Reply

Your email address will not be published. Required fields are marked *