Question Number 36184 by prof Abdo imad last updated on 30/May/18
$${study}\:{the}\:{convergence}\:{of}\:\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{cos}\left({t}\right)}{\:\sqrt{{t}}}{dt} \\ $$
Commented by maxmathsup by imad last updated on 19/Aug/18
$${by}\:{parts}\:{u}=\frac{\mathrm{1}}{\:\sqrt{{t}}}\:\:{and}\:{v}^{'} ={cost}\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{cost}}{\:\sqrt{{t}}}\:{dt}\:=\left[\:\frac{{sint}}{\:\sqrt{{t}}}\right]_{\mathrm{1}} ^{+\infty} \:−\int_{\mathrm{1}} ^{+\infty} \:\:\left(−\frac{\mathrm{1}}{\mathrm{2}{t}\sqrt{{t}}}\right){sint}\:{dt} \\ $$$$={sin}\mathrm{1}\:\:+\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{sint}}{{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:{dt}\:\:{but} \\ $$$$\mid\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{sint}}{{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }{dt}\mid\:\leqslant\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dt}}{{t}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{and}\:{this}\:{intevral}\:{converges}\:{because}\:\frac{\mathrm{3}}{\mathrm{2}}>\mathrm{1}\:. \\ $$$$ \\ $$