Menu Close

study-the-convergence-of-k-0-e-i-kpi-x-and-find-its-sum-




Question Number 42187 by maxmathsup by imad last updated on 19/Aug/18
study the convergence of Σ_(k=0) ^∞   e^(−i((kπ)/x))     and find its sum
studytheconvergenceofk=0eikπxandfinditssum
Commented by maxmathsup by imad last updated on 22/Aug/18
let S =Σ_(k=0) ^∞   e^(−i((kπ)/x))       (with x≠0)  S = Σ_(k=0) ^∞  (e^(−i(π/x)) )^k   = (1/(1−e^(−((iπ)/x)) )) = (1/(1−cos((π/x))+isin((π/x))))  =((1−cos((π/x)) −isin((π/x)))/((1−cos((π/x)))^2  +sin^2 ((π/x)))) =((1−cos((π/x)) −isin((π/x)))/(2−2cos((π/x))))  =(1/2) −(i/2)    ((sin((π/x)))/(2sin^2 ((π/(2x))))) =(1/2) −(i/2) ((2sin((π/(2x)))cos((π/(2x))))/(2sin^2 ((π/(2x))))) =(1/2) −(i/2) cotan((π/(2x)))  finally  S =(1/2) −(i/2)cotan((π/(2x))) .
letS=k=0eikπx(withx0)S=k=0(eiπx)k=11eiπx=11cos(πx)+isin(πx)=1cos(πx)isin(πx)(1cos(πx))2+sin2(πx)=1cos(πx)isin(πx)22cos(πx)=12i2sin(πx)2sin2(π2x)=12i22sin(π2x)cos(π2x)2sin2(π2x)=12i2cotan(π2x)finallyS=12i2cotan(π2x).

Leave a Reply

Your email address will not be published. Required fields are marked *