Menu Close

study-the-convergence-of-n-0-sin-pi-4n-2-1-




Question Number 52670 by maxmathsup by imad last updated on 11/Jan/19
study the convergence of Σ_(n=0) ^∞  sin(π(√(4n^2 +1)))
studytheconvergenceofn=0sin(π4n2+1)
Commented by maxmathsup by imad last updated on 12/Jan/19
we have π(√(4n^2 +1))=π(√(4n^2 (1+(1/(4n^2 )))))  =2nπ(√(1+(1/(4n^2 ))))   but we have  (√(1+x))=(1+x)^(1/2)  =1+(x/2) +(((1/2)((1/(2 ))−1))/2) x^2  +o(x^3 )  (x→0) ⇒  =1+(x/2) −(1/8) x^2  +o(x^3 ) ⇒(√(1+(1/(4n^2 ))))=1+(1/(8n^2 )) −(1/(8.16n^4 )) +o((1/n^6 )) ⇒  2nπ(√(1+(1/(4n^2 ))))=2nπ +(π/(4n)) −(π/(32n^3 )) +o((1/n^5 ))⇒sin(π(√(4n^2 +1))) ∼ sin((π/(4n)))∼(π/(4n))  but Σ (π/(4n)) diverges ⇒Σ sin(π(√(4n^2  +1))) diverges.
wehaveπ4n2+1=π4n2(1+14n2)=2nπ1+14n2butwehave1+x=(1+x)12=1+x2+12(121)2x2+o(x3)(x0)=1+x218x2+o(x3)1+14n2=1+18n218.16n4+o(1n6)2nπ1+14n2=2nπ+π4nπ32n3+o(1n5)sin(π4n2+1)sin(π4n)π4nbutΣπ4ndivergesΣsin(π4n2+1)diverges.
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Jan/19
((4n^2 +1)/2)≥(√(4n^2 ×1))   4n^2 +1≥4n  (√(4n^2 +1)) ≥(√(4n))   sin(π(√(4n^2 +1)) )≈sin(π×2(√n) )  sin((√n) ×2π)  1)now when n is perfect square  sin((√n) ×2π)=0  2)(√n) =I+f I=integer  f=fractional part    sin{(I+f)2π}  =sin{I×2π+f×2π}  =sin(f×2π)   1≥sin(2πf)≥−1  so Σ_(n=0) ^∞ sin(π(√(4n^2 +1)) ) does not converge      Σ_(n=0) ^∞ sin(π(√(4n^2 +1)) ) oscilates between ± ∞  i have tried to solve ...pls check is the logic  true...
4n2+124n2×14n2+14n4n2+14nsin(π4n2+1)sin(π×2n)sin(n×2π)1)nowwhennisperfectsquaresin(n×2π)=02)n=I+fI=integerf=fractionalpartsin{(I+f)2π}=sin{I×2π+f×2π}=sin(f×2π)1sin(2πf)1son=0sin(π4n2+1)doesnotconvergen=0sin(π4n2+1)oscilatesbetween±ihavetriedtosolveplscheckisthelogictrue

Leave a Reply

Your email address will not be published. Required fields are marked *