study-the-convergence-of-n-0-sin-pi-4n-2-1- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 52670 by maxmathsup by imad last updated on 11/Jan/19 studytheconvergenceof∑n=0∞sin(π4n2+1) Commented by maxmathsup by imad last updated on 12/Jan/19 wehaveπ4n2+1=π4n2(1+14n2)=2nπ1+14n2butwehave1+x=(1+x)12=1+x2+12(12−1)2x2+o(x3)(x→0)⇒=1+x2−18x2+o(x3)⇒1+14n2=1+18n2−18.16n4+o(1n6)⇒2nπ1+14n2=2nπ+π4n−π32n3+o(1n5)⇒sin(π4n2+1)∼sin(π4n)∼π4nbutΣπ4ndiverges⇒Σsin(π4n2+1)diverges. Answered by tanmay.chaudhury50@gmail.com last updated on 11/Jan/19 4n2+12⩾4n2×14n2+1⩾4n4n2+1⩾4nsin(π4n2+1)≈sin(π×2n)sin(n×2π)1)nowwhennisperfectsquaresin(n×2π)=02)n=I+fI=integerf=fractionalpartsin{(I+f)2π}=sin{I×2π+f×2π}=sin(f×2π)1⩾sin(2πf)⩾−1so∑∞n=0sin(π4n2+1)doesnotconverge∑∞n=0sin(π4n2+1)oscilatesbetween±∞ihavetriedtosolve…plscheckisthelogictrue… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: x-4-1-x-2-x-4-1-dx-Next Next post: study-the-sequence-u-0-1-and-u-n-1-1-1-u-n-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.