Menu Close

study-the-convergence-of-n-1-1-n-ln-1-1-n-1-x-




Question Number 36742 by prof Abdo imad last updated on 04/Jun/18
study the convergence of   Σ_(n=1) ^∞ (−1)^n ln(1+ (1/(n(1+x)))).
$${study}\:{the}\:{convergence}\:{of}\: \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {ln}\left(\mathrm{1}+\:\frac{\mathrm{1}}{{n}\left(\mathrm{1}+{x}\right)}\right). \\ $$
Commented by maxmathsup by imad last updated on 04/Aug/18
let f_n (x) =(−1)^n ln(1+(1/(n(1+x))))  for x≠−1 we have  (f_n ) are continues and  f_n (x) ∼(−1)^n   (1/(n(1+x)))  and Σ_(n≥1) (((−1)^n )/(n(1+x))) =(1/(1+x)) Σ_(n≥1)    (((−1))/n) is a convegent  serie so the simple convergence of Σ f_n (x) is assured
$${let}\:{f}_{{n}} \left({x}\right)\:=\left(−\mathrm{1}\right)^{{n}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}\left(\mathrm{1}+{x}\right)}\right)\:\:{for}\:{x}\neq−\mathrm{1}\:{we}\:{have}\:\:\left({f}_{{n}} \right)\:{are}\:{continues}\:{and} \\ $$$${f}_{{n}} \left({x}\right)\:\sim\left(−\mathrm{1}\right)^{{n}} \:\:\frac{\mathrm{1}}{{n}\left(\mathrm{1}+{x}\right)}\:\:{and}\:\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}\left(\mathrm{1}+{x}\right)}\:=\frac{\mathrm{1}}{\mathrm{1}+{x}}\:\sum_{{n}\geqslant\mathrm{1}} \:\:\:\frac{\left(−\mathrm{1}\right)}{{n}}\:{is}\:{a}\:{convegent} \\ $$$${serie}\:{so}\:{the}\:{simple}\:{convergence}\:{of}\:\Sigma\:{f}_{{n}} \left({x}\right)\:{is}\:{assured} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *