Menu Close

study-the-convergence-of-n-1-ln-1-e-n-2-n-n-




Question Number 62204 by maxmathsup by imad last updated on 17/Jun/19
study the convergence of    Σ_(n≥1)  ((ln(1+e^(−n^2 ) ))/n^n )
$${study}\:{the}\:{convergence}\:{of}\:\:\:\:\sum_{{n}\geqslant\mathrm{1}} \:\frac{{ln}\left(\mathrm{1}+{e}^{−{n}^{\mathrm{2}} } \right)}{{n}^{{n}} } \\ $$
Commented by maxmathsup by imad last updated on 19/Jun/19
let U_n =((ln(1+e^(−n^2 ) ))/n^n )   we have ln(1+u) ∼ u   (u∈V(0)) ⇒  ln(1+e^(−n^2 ) ) ∼e^(−n^2  )  ⇒ U_n ∼  (e^(−n^2 ) /n^n )  for all ξ>0 we have  lim_(n→+∞)  n^(1+ξ)  U_n =lim_(n→+∞)  n^(1+ξ  )  (e^(−n^2 ) /n^n )  =lim_(n→+∞)    (e^(−n^2 ) /n^(n−1−ξ) ) =0  ⇒ ∃A>0    ∀ n>n_0       U_n <  (A/n^(1+ξ) )  the seri Σ (A/n^(1+ξ) ) is convergent ⇒ Σ U_n  converges.
$${let}\:{U}_{{n}} =\frac{{ln}\left(\mathrm{1}+{e}^{−{n}^{\mathrm{2}} } \right)}{{n}^{{n}} }\:\:\:{we}\:{have}\:{ln}\left(\mathrm{1}+{u}\right)\:\sim\:{u}\:\:\:\left({u}\in{V}\left(\mathrm{0}\right)\right)\:\Rightarrow \\ $$$${ln}\left(\mathrm{1}+{e}^{−{n}^{\mathrm{2}} } \right)\:\sim{e}^{−{n}^{\mathrm{2}} \:} \:\Rightarrow\:{U}_{{n}} \sim\:\:\frac{{e}^{−{n}^{\mathrm{2}} } }{{n}^{{n}} } \\ $$$${for}\:{all}\:\xi>\mathrm{0}\:{we}\:{have}\:\:{lim}_{{n}\rightarrow+\infty} \:{n}^{\mathrm{1}+\xi} \:{U}_{{n}} ={lim}_{{n}\rightarrow+\infty} \:{n}^{\mathrm{1}+\xi\:\:} \:\frac{{e}^{−{n}^{\mathrm{2}} } }{{n}^{{n}} } \\ $$$$={lim}_{{n}\rightarrow+\infty} \:\:\:\frac{{e}^{−{n}^{\mathrm{2}} } }{{n}^{{n}−\mathrm{1}−\xi} }\:=\mathrm{0}\:\:\Rightarrow\:\exists{A}>\mathrm{0}\:\:\:\:\forall\:{n}>{n}_{\mathrm{0}} \:\:\:\:\:\:{U}_{{n}} <\:\:\frac{{A}}{{n}^{\mathrm{1}+\xi} } \\ $$$${the}\:{seri}\:\Sigma\:\frac{{A}}{{n}^{\mathrm{1}+\xi} }\:{is}\:{convergent}\:\Rightarrow\:\Sigma\:{U}_{{n}} \:{converges}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *