Menu Close

study-the-convergence-of-n-1-ln-1-e-n-2-n-n-




Question Number 62204 by maxmathsup by imad last updated on 17/Jun/19
study the convergence of    Σ_(n≥1)  ((ln(1+e^(−n^2 ) ))/n^n )
studytheconvergenceofn1ln(1+en2)nn
Commented by maxmathsup by imad last updated on 19/Jun/19
let U_n =((ln(1+e^(−n^2 ) ))/n^n )   we have ln(1+u) ∼ u   (u∈V(0)) ⇒  ln(1+e^(−n^2 ) ) ∼e^(−n^2  )  ⇒ U_n ∼  (e^(−n^2 ) /n^n )  for all ξ>0 we have  lim_(n→+∞)  n^(1+ξ)  U_n =lim_(n→+∞)  n^(1+ξ  )  (e^(−n^2 ) /n^n )  =lim_(n→+∞)    (e^(−n^2 ) /n^(n−1−ξ) ) =0  ⇒ ∃A>0    ∀ n>n_0       U_n <  (A/n^(1+ξ) )  the seri Σ (A/n^(1+ξ) ) is convergent ⇒ Σ U_n  converges.
letUn=ln(1+en2)nnwehaveln(1+u)u(uV(0))ln(1+en2)en2Unen2nnforallξ>0wehavelimn+n1+ξUn=limn+n1+ξen2nn=limn+en2nn1ξ=0A>0n>n0Un<An1+ξtheseriΣAn1+ξisconvergentΣUnconverges.

Leave a Reply

Your email address will not be published. Required fields are marked *