Menu Close

study-the-convergence-of-n-1-ln-1-x-n-2-




Question Number 33336 by prof Abdo imad last updated on 14/Apr/18
study the convergence of  Σ_(n=1) ^∞ ln(1+(x/n^2 ))
$${study}\:{the}\:{convergence}\:{of}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} {ln}\left(\mathrm{1}+\frac{{x}}{{n}^{\mathrm{2}} }\right) \\ $$
Commented by prof Abdo imad last updated on 25/Apr/18
we have ln(1+(x/n^2 )) ∼ (x/n^2 ) and the serie Σ_(n≥1) (x/n^2 )  is convergent so the serie Σ_(n≥1)   ln(1+(x/n^2 )) is  convergent .
$${we}\:{have}\:{ln}\left(\mathrm{1}+\frac{{x}}{{n}^{\mathrm{2}} }\right)\:\sim\:\frac{{x}}{{n}^{\mathrm{2}} }\:{and}\:{the}\:{serie}\:\sum_{{n}\geqslant\mathrm{1}} \frac{{x}}{{n}^{\mathrm{2}} } \\ $$$${is}\:{convergent}\:{so}\:{the}\:{serie}\:\sum_{{n}\geqslant\mathrm{1}} \:\:{ln}\left(\mathrm{1}+\frac{{x}}{{n}^{\mathrm{2}} }\right)\:{is} \\ $$$${convergent}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *