Menu Close

study-the-convergence-of-u-n-1-2-1-u-n-2-u-n-1-with-u-0-0-




Question Number 56828 by maxmathsup by imad last updated on 24/Mar/19
study the convergence of u_(n+1) =2(√(1+u_n ^2 ))−u_n −1    with u_0 =0
$${study}\:{the}\:{convergence}\:{of}\:{u}_{{n}+\mathrm{1}} =\mathrm{2}\sqrt{\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} }−{u}_{{n}} −\mathrm{1}\:\:\:\:{with}\:{u}_{\mathrm{0}} =\mathrm{0} \\ $$
Commented by maxmathsup by imad last updated on 16/Apr/19
we have u_(n+1) =f(u_n ) withf(x)=2(√(1+x^2 ))−x−1  let prove that u_n >0   we have u_1 =2−1=1>0 let suppose u_n >0  2(√(1+u_n ^2 ))−u_n −1 =2(√(1+u_n ^2 )) −(u_n  +1)  and 4(1+u_n ^2 )−(u_n +1)^2   =4u_n ^2  +4 −u_n ^2  −2u_n −1 =2u_n ^2  −2u_n  +3 →Δ =4−4(2).3 <0   (a=2 >0)⇒  2u_n ^2 −u_n +3   for that let study the variation of f on[0,+∞[  f^′ (x) =2 ((2x)/(2(√(1+x^2 )))) −1 =((2x)/( (√(1+x^2 )))) −1 =((2x−(√(1+x^2 )))/( (√(1+x^2 )))) =((4x^2 −1−x^2 )/( (√(1+x^2 ))(2x+(√(1+x^2 )))))  =((3x^2 −1)/( (√(1+x^2 (2x +(√(1+x^2 ))))))) so f^′ (x)=0 ⇔ x =(1/( (√3)))  f((1/( (√3)))) =2(√(1+(1/3)))−(1/( (√3))) −1 =(4/( (√3))) −(1/( (√3))) −1 =(√3)−1   x         0                     (1/( (√3)))                              +∞  f^′ (x)              −                    +  f(x)   1    decr     (√3)−1          incr    +∞  let determine  the fixed  point    f(x) =x  ⇒2(√(1+x^2 )) −x−1 =x ⇒2(√(1+x^2 ))=2x +1 ⇒4(1+x^2 ) =4x^2  +4x +1 ⇒  4 =4x+1 ⇒4x =3 ⇒x =(3/4)  f is continue on [0,+∞[ so (u_n )converges and  lim_(n→+∞)  u_n =(3/4) .
$${we}\:{have}\:{u}_{{n}+\mathrm{1}} ={f}\left({u}_{{n}} \right)\:{withf}\left({x}\right)=\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−{x}−\mathrm{1} \\ $$$${let}\:{prove}\:{that}\:{u}_{{n}} >\mathrm{0}\:\:\:{we}\:{have}\:{u}_{\mathrm{1}} =\mathrm{2}−\mathrm{1}=\mathrm{1}>\mathrm{0}\:{let}\:{suppose}\:{u}_{{n}} >\mathrm{0} \\ $$$$\mathrm{2}\sqrt{\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} }−{u}_{{n}} −\mathrm{1}\:=\mathrm{2}\sqrt{\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} }\:−\left({u}_{{n}} \:+\mathrm{1}\right)\:\:{and}\:\mathrm{4}\left(\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} \right)−\left({u}_{{n}} +\mathrm{1}\right)^{\mathrm{2}} \\ $$$$=\mathrm{4}{u}_{{n}} ^{\mathrm{2}} \:+\mathrm{4}\:−{u}_{{n}} ^{\mathrm{2}} \:−\mathrm{2}{u}_{{n}} −\mathrm{1}\:=\mathrm{2}{u}_{{n}} ^{\mathrm{2}} \:−\mathrm{2}{u}_{{n}} \:+\mathrm{3}\:\rightarrow\Delta\:=\mathrm{4}−\mathrm{4}\left(\mathrm{2}\right).\mathrm{3}\:<\mathrm{0}\:\:\:\left({a}=\mathrm{2}\:>\mathrm{0}\right)\Rightarrow \\ $$$$\mathrm{2}{u}_{{n}} ^{\mathrm{2}} −{u}_{{n}} +\mathrm{3}\:\:\:{for}\:{that}\:{let}\:{study}\:{the}\:{variation}\:{of}\:{f}\:{on}\left[\mathrm{0},+\infty\left[\right.\right. \\ $$$$\left.{f}^{'} \left({x}\right)\:=\mathrm{2}\:\frac{\mathrm{2}{x}}{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:−\mathrm{1}\:=\frac{\mathrm{2}{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:−\mathrm{1}\:=\frac{\mathrm{2}{x}−\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\:=\frac{\mathrm{4}{x}^{\mathrm{2}} −\mathrm{1}−{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\left(\mathrm{2}{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\right.}\right) \\ $$$$=\frac{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} \left(\mathrm{2}{x}\:+\sqrt{\left.\mathrm{1}+{x}^{\mathrm{2}} \right)}\right.}}\:{so}\:{f}^{'} \left({x}\right)=\mathrm{0}\:\Leftrightarrow\:{x}\:=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$$${f}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\:=\mathrm{2}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:−\mathrm{1}\:=\frac{\mathrm{4}}{\:\sqrt{\mathrm{3}}}\:−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:−\mathrm{1}\:=\sqrt{\mathrm{3}}−\mathrm{1}\: \\ $$$${x}\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+ \\ $$$${f}\left({x}\right)\:\:\:\mathrm{1}\:\:\:\:{decr}\:\:\:\:\:\sqrt{\mathrm{3}}−\mathrm{1}\:\:\:\:\:\:\:\:\:\:{incr}\:\:\:\:+\infty \\ $$$${let}\:{determine}\:\:{the}\:{fixed}\:\:{point}\:\: \\ $$$${f}\left({x}\right)\:={x}\:\:\Rightarrow\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:−{x}−\mathrm{1}\:={x}\:\Rightarrow\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }=\mathrm{2}{x}\:+\mathrm{1}\:\Rightarrow\mathrm{4}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\:=\mathrm{4}{x}^{\mathrm{2}} \:+\mathrm{4}{x}\:+\mathrm{1}\:\Rightarrow \\ $$$$\mathrm{4}\:=\mathrm{4}{x}+\mathrm{1}\:\Rightarrow\mathrm{4}{x}\:=\mathrm{3}\:\Rightarrow{x}\:=\frac{\mathrm{3}}{\mathrm{4}}\:\:{f}\:{is}\:{continue}\:{on}\:\left[\mathrm{0},+\infty\left[\:{so}\:\left({u}_{{n}} \right){converges}\:{and}\right.\right. \\ $$$${lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} =\frac{\mathrm{3}}{\mathrm{4}}\:. \\ $$
Answered by kaivan.ahmadi last updated on 25/Mar/19
l=2(√(1+l^2 ))−l−1⇒2l+1=2(√(1+l^2 ))⇒  4l^2 +4l+1=4+4l^2 ⇒4l=3⇒l=(3/4)
$${l}=\mathrm{2}\sqrt{\mathrm{1}+{l}^{\mathrm{2}} }−{l}−\mathrm{1}\Rightarrow\mathrm{2}{l}+\mathrm{1}=\mathrm{2}\sqrt{\mathrm{1}+{l}^{\mathrm{2}} }\Rightarrow \\ $$$$\mathrm{4}{l}^{\mathrm{2}} +\mathrm{4}{l}+\mathrm{1}=\mathrm{4}+\mathrm{4}{l}^{\mathrm{2}} \Rightarrow\mathrm{4}{l}=\mathrm{3}\Rightarrow{l}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *