Menu Close

study-the-convergence-of-u-n-1-2-1-u-n-2-u-n-1-with-u-0-0-




Question Number 56828 by maxmathsup by imad last updated on 24/Mar/19
study the convergence of u_(n+1) =2(√(1+u_n ^2 ))−u_n −1    with u_0 =0
studytheconvergenceofun+1=21+un2un1withu0=0
Commented by maxmathsup by imad last updated on 16/Apr/19
we have u_(n+1) =f(u_n ) withf(x)=2(√(1+x^2 ))−x−1  let prove that u_n >0   we have u_1 =2−1=1>0 let suppose u_n >0  2(√(1+u_n ^2 ))−u_n −1 =2(√(1+u_n ^2 )) −(u_n  +1)  and 4(1+u_n ^2 )−(u_n +1)^2   =4u_n ^2  +4 −u_n ^2  −2u_n −1 =2u_n ^2  −2u_n  +3 →Δ =4−4(2).3 <0   (a=2 >0)⇒  2u_n ^2 −u_n +3   for that let study the variation of f on[0,+∞[  f^′ (x) =2 ((2x)/(2(√(1+x^2 )))) −1 =((2x)/( (√(1+x^2 )))) −1 =((2x−(√(1+x^2 )))/( (√(1+x^2 )))) =((4x^2 −1−x^2 )/( (√(1+x^2 ))(2x+(√(1+x^2 )))))  =((3x^2 −1)/( (√(1+x^2 (2x +(√(1+x^2 ))))))) so f^′ (x)=0 ⇔ x =(1/( (√3)))  f((1/( (√3)))) =2(√(1+(1/3)))−(1/( (√3))) −1 =(4/( (√3))) −(1/( (√3))) −1 =(√3)−1   x         0                     (1/( (√3)))                              +∞  f^′ (x)              −                    +  f(x)   1    decr     (√3)−1          incr    +∞  let determine  the fixed  point    f(x) =x  ⇒2(√(1+x^2 )) −x−1 =x ⇒2(√(1+x^2 ))=2x +1 ⇒4(1+x^2 ) =4x^2  +4x +1 ⇒  4 =4x+1 ⇒4x =3 ⇒x =(3/4)  f is continue on [0,+∞[ so (u_n )converges and  lim_(n→+∞)  u_n =(3/4) .
wehaveun+1=f(un)withf(x)=21+x2x1letprovethatun>0wehaveu1=21=1>0letsupposeun>021+un2un1=21+un2(un+1)and4(1+un2)(un+1)2=4un2+4un22un1=2un22un+3Δ=44(2).3<0(a=2>0)2un2un+3forthatletstudythevariationoffon[0,+[f(x)=22x21+x21=2x1+x21=2x1+x21+x2=4x21x21+x2(2x+1+x2)=3x211+x2(2x+1+x2)sof(x)=0x=13f(13)=21+13131=43131=31x013+f(x)+f(x)1decr31incr+letdeterminethefixedpointf(x)=x21+x2x1=x21+x2=2x+14(1+x2)=4x2+4x+14=4x+14x=3x=34fiscontinueon[0,+[so(un)convergesandlimn+un=34.
Answered by kaivan.ahmadi last updated on 25/Mar/19
l=2(√(1+l^2 ))−l−1⇒2l+1=2(√(1+l^2 ))⇒  4l^2 +4l+1=4+4l^2 ⇒4l=3⇒l=(3/4)
l=21+l2l12l+1=21+l24l2+4l+1=4+4l24l=3l=34

Leave a Reply

Your email address will not be published. Required fields are marked *