Menu Close

study-the-convergence-of-u-n-k-0-n-1-C-n-k-with-C-n-k-n-k-n-k-




Question Number 30194 by abdo imad last updated on 17/Feb/18
study the convergence of u_n = Σ_(k=0) ^n   (1/C_n ^k )  with  C_n ^k   =((n!)/(k!(n−k)!)) .
$${study}\:{the}\:{convergence}\:{of}\:{u}_{{n}} =\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\:\frac{\mathrm{1}}{{C}_{{n}} ^{{k}} }\:\:{with} \\ $$$${C}_{{n}} ^{{k}} \:\:=\frac{{n}!}{{k}!\left({n}−{k}\right)!}\:. \\ $$
Commented by prof Abdo imad last updated on 22/Feb/18
let put  x_n = (1/C_n ^k )    ∀ n∈ N  x_n >0  we have    (x_(n+1) /x_n ) =  (C_n ^k /C_(n+1) ^k ) = (((n!)/(k!(n−k)!))/(((n+1)!)/(k!(n+1−k)!)))= (1/(n+1)) (((n+1−k)!)/((n−k)!))  = ((n+1−k)/(n+1))= 1− (k/(n+1)) <1  from that  u_n  isconvergent.
$${let}\:{put}\:\:{x}_{{n}} =\:\frac{\mathrm{1}}{{C}_{{n}} ^{{k}} }\:\:\:\:\forall\:{n}\in\:{N}\:\:{x}_{{n}} >\mathrm{0}\:\:{we}\:{have} \\ $$$$ \\ $$$$\frac{{x}_{{n}+\mathrm{1}} }{{x}_{{n}} }\:=\:\:\frac{{C}_{{n}} ^{{k}} }{{C}_{{n}+\mathrm{1}} ^{{k}} }\:=\:\frac{\frac{{n}!}{{k}!\left({n}−{k}\right)!}}{\frac{\left({n}+\mathrm{1}\right)!}{{k}!\left({n}+\mathrm{1}−{k}\right)!}}=\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\:\frac{\left({n}+\mathrm{1}−{k}\right)!}{\left({n}−{k}\right)!} \\ $$$$=\:\frac{{n}+\mathrm{1}−{k}}{{n}+\mathrm{1}}=\:\mathrm{1}−\:\frac{{k}}{{n}+\mathrm{1}}\:<\mathrm{1}\:\:{from}\:{that}\:\:{u}_{{n}} \:{isconvergent}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *