study-the-convergence-of-u-n-k-1-n-1-k-1-C-n-k-k-for-that-use-H-n-k-1-n-1-k- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 30214 by abdo imad last updated on 18/Feb/18 studytheconvergenceofun=∑k=1n(−1)k−1CnkkforthatuseHn=∑k=1n1k. Commented by prof Abdo imad last updated on 22/Feb/18 letcondiderp(x)=∑k=1n(−1)k−1Cnkkxkwehavep′(x)=∑k=1nCnk(−1)k−1xk−1=−1x∑k=1nCnk(−1)kxk=−1x(∑k=0n(−1)kxk−1)=1x(1−(1−x)n)=1−(1−x)nx⇒p(x)=∫0x1−(1−t)ntdt+λbutλ=p(0)=0⇒p(x)=∫0x1−(1−t)ntdtandun=p(1)⇒un=∫011−(1−t)ntdt==∫01((1+(1−t)+(1−t)2+….(1−t)n−1)dt=∫01∑k=0n−1(1−t)kdt=∑k=0n−1∫01(1−t)kdt=∑k=0n−1[−1k+1(1−t)k+1]01=∑k=0n−11k+1=HnbutHn∼ln(n)forn→∞⇒limn→∞un=+∞. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: p-integr-and-p-2-1-prove-that-c-0-1-ln-ln-p-1-ln-lnp-1-p-c-ln-p-c-2-prove-that-ln-ln-p-1-ln-ln-p-lt-1-plnp-3-prove-that-lim-n-k-2-n-1-klnk-Next Next post: Question-161284 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.