Menu Close

study-the-convergence-of-u-n-k-1-n-1-k-1-C-n-k-k-for-that-use-H-n-k-1-n-1-k-




Question Number 30214 by abdo imad last updated on 18/Feb/18
study the convergence of u_n = Σ_(k=1) ^n (−1)^(k−1)   (C_n ^k /k)  for that use H_n = Σ_(k=1) ^n  (1/k) .
studytheconvergenceofun=k=1n(1)k1CnkkforthatuseHn=k=1n1k.
Commented by prof Abdo imad last updated on 22/Feb/18
let condider  p(x)= Σ_(k=1) ^n (−1)^(k−1) (C_n ^k /k) x^k  we have  p^′ (x)= Σ_(k=1) ^n  C_n ^k  (−1)^(k−1)  x^(k−1)   =((−1)/x)Σ_(k=1) ^n   C_n ^k  (−1)^k  x^k  =−(1/x)(Σ_(k=0) ^n (−1)^k x^k  −1)  =(1/x)( 1−(1−x)^n )=((1−(1−x)^n )/x) ⇒  p(x)= ∫_0 ^x     ((1−(1−t)^n )/t)dt +λ  but λ=p(0)=0⇒  p(x)= ∫_0 ^x   ((1−(1−t)^n )/t)dt  and u_n =p(1)⇒  u_n = ∫_0 ^1    ((1−(1−t)^n )/t)dt =  = ∫_0 ^1  ((1+(1−t) +(1−t)^2  +....(1−t)^(n−1) )dt  =∫_0 ^1 Σ_(k=0) ^(n−1) (1−t)^k dt= Σ_(k=0) ^(n−1)   ∫_0 ^1  (1−t)^k dt  =Σ_(k=0) ^(n−1)  [((−1)/(k+1))(1−t)^(k+1) ]_0 ^1 =Σ_(k=0) ^(n−1)   (1/(k+1)) = H_n  but  H_n  ∼ln(n) for n→∞  ⇒lim_(n→∞) u_n =+∞.
letcondiderp(x)=k=1n(1)k1Cnkkxkwehavep(x)=k=1nCnk(1)k1xk1=1xk=1nCnk(1)kxk=1x(k=0n(1)kxk1)=1x(1(1x)n)=1(1x)nxp(x)=0x1(1t)ntdt+λbutλ=p(0)=0p(x)=0x1(1t)ntdtandun=p(1)un=011(1t)ntdt==01((1+(1t)+(1t)2+.(1t)n1)dt=01k=0n1(1t)kdt=k=0n101(1t)kdt=k=0n1[1k+1(1t)k+1]01=k=0n11k+1=HnbutHnln(n)fornlimnun=+.

Leave a Reply

Your email address will not be published. Required fields are marked *