Menu Close

study-the-convergence-of-U-n-with-U-n-0-cos-nx-x-2-n-2-dx-n-1-




Question Number 64525 by mathmax by abdo last updated on 19/Jul/19
study the convergence of Σ U_n    with  U_n =∫_0 ^∞    ((cos(nx))/(x^2  +n^2 ))dx   (n≥1)
studytheconvergenceofΣUnwithUn=0cos(nx)x2+n2dx(n1)
Commented by mathmax by abdo last updated on 19/Jul/19
we have  2U_n =∫_(−∞) ^(+∞)   ((cos(nx))/(x^2 +n^2 )) =_(x=nt)    ∫_(−∞) ^(+∞)   ((cos(n^2 t))/(n^2 (1+t^2 )))ndt  =(1/n) ∫_(−∞) ^(+∞)   ((cos(n^2 t))/(t^2  +1))dt =(1/n) Re( ∫_(−∞) ^(+∞)  (e^(in^2 t) /(t^2  +1))dt) let ϕ(z)=(e^(in^2 z) /(z^2  +1))  we have ϕ(z) =(e^(inz^2 ) /((z−i)(z+i)))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i)=lim_(z→i) (z−i)ϕ(z) =lim_(z→i)  (e^(in^2 z) /(z+i)) =(e^(−n^2 ) /(2i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (e^(−n^2 ) /(2i)) =π e^(−n^2  )  ⇒2U_n =(π/n) e^(−n^2 )  ⇒  U_n =(π/(2n)) e^(−n^2 )      (n≥1)  its claear that Σ_(n=1) ^∞  U_n ≤(π/2)Σ_(n=1) ^∞  e^(−n^2 )   ≤(π/2)Σ_(n=1) ^∞  e^(−n)     and this serie is convergent ⇒ΣU_n  converges
wehave2Un=+cos(nx)x2+n2=x=nt+cos(n2t)n2(1+t2)ndt=1n+cos(n2t)t2+1dt=1nRe(+ein2tt2+1dt)letφ(z)=ein2zz2+1wehaveφ(z)=einz2(zi)(z+i)residustheoremgive+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi(zi)φ(z)=limziein2zz+i=en22i+φ(z)dz=2iπen22i=πen22Un=πnen2Un=π2nen2(n1)itsclaearthatn=1Unπ2n=1en2π2n=1enandthisserieisconvergentΣUnconverges

Leave a Reply

Your email address will not be published. Required fields are marked *