Menu Close

study-the-convergence-of-v-n-k-1-n-1-k-1-2-k-ln-k-




Question Number 40123 by maxmathsup by imad last updated on 15/Jul/18
study the convergence of  v_n = Σ_(k=1) ^n    (((−1)^(k+1) )/(2^k  +ln(k)))
$${study}\:{the}\:{convergence}\:{of} \\ $$$${v}_{{n}} =\:\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\:\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}^{{k}} \:+{ln}\left({k}\right)} \\ $$
Answered by math khazana by abdo last updated on 19/Jul/18
we have v_n =(1/2) +Σ_(k=2) ^n   (((−1)^(k+1) )/(2^k  +ln(k))) ⇒  ∣v_n ∣ ≤ (1/2) +Σ_(k=2) ^n    (1/(2^k  +ln(k))) but for k∈[[2,n]]  ln(k)≥ln(2)>0 ⇒2^k  +ln(k)>2^k  ⇒  (1/(2^k  +ln(k))) < (1/2^k ) ⇒∣v_n ∣ <(1/2) +Σ_(k=2) ^n  (1/2^k ) =Σ_(k=1) ^n  (1/2^k )  the serie Σ_(k≥1)   (1/2^k ) is convergent so (v_n ) converges
$${we}\:{have}\:{v}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:+\sum_{{k}=\mathrm{2}} ^{{n}} \:\:\frac{\left(−\mathrm{1}\right)^{{k}+\mathrm{1}} }{\mathrm{2}^{{k}} \:+{ln}\left({k}\right)}\:\Rightarrow \\ $$$$\mid{v}_{{n}} \mid\:\leqslant\:\frac{\mathrm{1}}{\mathrm{2}}\:+\sum_{{k}=\mathrm{2}} ^{{n}} \:\:\:\frac{\mathrm{1}}{\mathrm{2}^{{k}} \:+{ln}\left({k}\right)}\:{but}\:{for}\:{k}\in\left[\left[\mathrm{2},{n}\right]\right] \\ $$$${ln}\left({k}\right)\geqslant{ln}\left(\mathrm{2}\right)>\mathrm{0}\:\Rightarrow\mathrm{2}^{{k}} \:+{ln}\left({k}\right)>\mathrm{2}^{{k}} \:\Rightarrow \\ $$$$\frac{\mathrm{1}}{\mathrm{2}^{{k}} \:+{ln}\left({k}\right)}\:<\:\frac{\mathrm{1}}{\mathrm{2}^{{k}} }\:\Rightarrow\mid{v}_{{n}} \mid\:<\frac{\mathrm{1}}{\mathrm{2}}\:+\sum_{{k}=\mathrm{2}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}^{{k}} }\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{\mathrm{2}^{{k}} } \\ $$$${the}\:{serie}\:\sum_{{k}\geqslant\mathrm{1}} \:\:\frac{\mathrm{1}}{\mathrm{2}^{{k}} }\:{is}\:{convergent}\:{so}\:\left({v}_{{n}} \right)\:{converges} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *