Menu Close

study-the-convervence-of-1-arctan-x-1-x-2-1-4-3-dx-




Question Number 42812 by maxmathsup by imad last updated on 02/Sep/18
study the convervence of  ∫_1 ^(+∞)   ((arctan(x−1))/((x^2 −1)^(4/3) )) dx
$${study}\:{the}\:{convervence}\:{of}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{arctan}\left({x}−\mathrm{1}\right)}{\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:{dx} \\ $$
Commented by maxmathsup by imad last updated on 08/Sep/18
changement x−1 =t give   I = ∫_0 ^(+∞)   ((arctan(t))/(t^(4/3) (t+2)^(4/3) )) dt   ⇒ I = ∫_0 ^1    ((arctan(t))/(t^(4/3) (t+2)^(4/3) )) dt +∫_1 ^(+∞)    ((arctan(t))/(t^(4/3) (t+2)^(4/3) ))dt  at V(0)   ((arctant)/(t^(4/3) (t+2)^(4/3) )) ∼ (t/(t^(4/3)  2^(4/3) )) =  (1/(t^(1/3)   2^(4/3) )) and the  integral ∫_0 ^1     (dt/(2^(4/3)  t^(1/3) )) converges  from another side  lim_(t→+∞)  t^2   ((arctan(t))/(t^(4/3) (t+2)^(4/3) ))  =lim_(t→+∞)       ((arctan(t))/t^((8/3)−2) ) =lim_(t→+∞)    ((arctan(t))/t^(2/3) ) =0 so the integral  ∫_1 ^(+∞)    ((arctan(t))/(t^(4/3) (t+2)^(4/3) ))dt converges the convergence of I is assured.
$${changement}\:{x}−\mathrm{1}\:={t}\:{give}\: \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:{dt}\:\:\:\Rightarrow\:{I}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:{dt}\:+\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dt} \\ $$$${at}\:{V}\left(\mathrm{0}\right)\:\:\:\frac{{arctant}}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }\:\sim\:\frac{{t}}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \:\mathrm{2}^{\frac{\mathrm{4}}{\mathrm{3}}} }\:=\:\:\frac{\mathrm{1}}{{t}^{\frac{\mathrm{1}}{\mathrm{3}}} \:\:\mathrm{2}^{\frac{\mathrm{4}}{\mathrm{3}}} }\:{and}\:{the}\:\:{integral}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dt}}{\mathrm{2}^{\frac{\mathrm{4}}{\mathrm{3}}} \:{t}^{\frac{\mathrm{1}}{\mathrm{3}}} }\:{converges} \\ $$$${from}\:{another}\:{side}\:\:{lim}_{{t}\rightarrow+\infty} \:{t}^{\mathrm{2}} \:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} } \\ $$$$={lim}_{{t}\rightarrow+\infty} \:\:\:\:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{8}}{\mathrm{3}}−\mathrm{2}} }\:={lim}_{{t}\rightarrow+\infty} \:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{2}}{\mathrm{3}}} }\:=\mathrm{0}\:{so}\:{the}\:{integral} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{arctan}\left({t}\right)}{{t}^{\frac{\mathrm{4}}{\mathrm{3}}} \left({t}+\mathrm{2}\right)^{\frac{\mathrm{4}}{\mathrm{3}}} }{dt}\:{converges}\:{the}\:{convergence}\:{of}\:{I}\:{is}\:{assured}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *