Menu Close

study-the-integral-0-1-x-ln-1-x-dx-




Question Number 60680 by maxmathsup by imad last updated on 24/May/19
study the integral ∫_0 ^1  (x/(ln(1−x)))dx
studytheintegral01xln(1x)dx
Commented by maxmathsup by imad last updated on 29/May/19
let I =∫_0 ^1   (x/(ln(1−x)))dx  changement ln(1−x)=−t  give  1−x =e^(−t)   I = ∫_0 ^∞    ((1−e^(−t) )/(−t)) (e^(−t) dt) =−∫_0 ^∞   ((e^(−t) −e^(−2t) )/t)dt =∫_0 ^∞  ((e^(−2t) −e^(−t) )/t) dt  at v(0)   e^(−2t)  ∼1−2t    ,e^(−t)  ∼1−t  ⇒e^(−2t)  −e^(−t)  ∼−t ⇒  ((e^(−2t) −e^(−t) )/t) ∼−1     also lim_(→+∞)     t^2  ((e^(−2t)  −e^(−t) )/t)  =0 ⇒I converges
letI=01xln(1x)dxchangementln(1x)=tgive1x=etI=01ett(etdt)=0ete2ttdt=0e2tettdtatv(0)e2t12t,et1te2tette2tett1alsolim+t2e2tett=0Iconverges
Commented by maxmathsup by imad last updated on 29/May/19
we have I =lim_(ξ→0)  I(ξ)  with I(ξ) =∫_ξ ^∞   ((e^(−2t) −e^(−t) )/t) dt  I(ξ) =∫_ξ ^(+∞)  (e^(−2t) /t) dt =_(2t =u)      ∫_(2ξ) ^(+∞)   (e^(−u) /(u/2)) (du/2) = ∫_(2ξ) ^(+∞)  (e^(−u) /u) du ⇒  I(ξ) =∫_(2ξ) ^(+∞)  (e^(−t) /t)dt −∫_ξ ^(+∞)   (e^(−t) /t) dt = ∫_(2ξ) ^ξ   (e^(−t) /t) dt =−∫_ξ ^(2ξ)   (e^(−t) /t) dt   ∃ c ∈]ξ,2ξ[  /  I(ξ) =−e^(−ξ)   ∫_ξ ^(2ξ)   (dt/t) =−e^(−ξ)  ln(((2ξ)/ξ)) ⇒lim_(ξ→0)  I(ξ) =−ln(2) ⇒  I =−ln(2).
wehaveI=limξ0I(ξ)withI(ξ)=ξe2tettdtI(ξ)=ξ+e2ttdt=2t=u2ξ+euu2du2=2ξ+euuduI(ξ)=2ξ+ettdtξ+ettdt=2ξξettdt=ξ2ξettdtc]ξ,2ξ[/I(ξ)=eξξ2ξdtt=eξln(2ξξ)limξ0I(ξ)=ln(2)I=ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *