study-the-integral-0-1-x-ln-1-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60680 by maxmathsup by imad last updated on 24/May/19 studytheintegral∫01xln(1−x)dx Commented by maxmathsup by imad last updated on 29/May/19 letI=∫01xln(1−x)dxchangementln(1−x)=−tgive1−x=e−tI=∫0∞1−e−t−t(e−tdt)=−∫0∞e−t−e−2ttdt=∫0∞e−2t−e−ttdtatv(0)e−2t∼1−2t,e−t∼1−t⇒e−2t−e−t∼−t⇒e−2t−e−tt∼−1alsolim→+∞t2e−2t−e−tt=0⇒Iconverges Commented by maxmathsup by imad last updated on 29/May/19 wehaveI=limξ→0I(ξ)withI(ξ)=∫ξ∞e−2t−e−ttdtI(ξ)=∫ξ+∞e−2ttdt=2t=u∫2ξ+∞e−uu2du2=∫2ξ+∞e−uudu⇒I(ξ)=∫2ξ+∞e−ttdt−∫ξ+∞e−ttdt=∫2ξξe−ttdt=−∫ξ2ξe−ttdt∃c∈]ξ,2ξ[/I(ξ)=−e−ξ∫ξ2ξdtt=−e−ξln(2ξξ)⇒limξ→0I(ξ)=−ln(2)⇒I=−ln(2). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-1-ln-1-x-2-x-dx-Next Next post: Question-126217 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.