Menu Close

study-the-nature-of-the-serie-n-2-cosn-n-1-n-z-n-




Question Number 26574 by abdo imad last updated on 26/Dec/17
study the nature of the serie   Σ_(n=2) ^∝   ((cosn)/( (√(n+(−1)^n )))) z^n
$${study}\:{the}\:{nature}\:{of}\:{the}\:{serie}\:\:\:\sum_{{n}=\mathrm{2}} ^{\propto} \:\:\frac{{cosn}}{\:\sqrt{{n}+\left(−\mathrm{1}\right)^{{n}} }}\:{z}^{{n}} \\ $$
Commented by abdo imad last updated on 29/Dec/17
we have   (1/( (√(n+(−1)^n )))) = (1/( (√n)))  (1/( (√( 1+(((−1)^n )/n)))))  = (1/( (√n))) (1+ (((−1)^n )/n) )^(−(1/2))  but we know?that  (1+u)^α ∼_(α∈v(0))   1+αu  ∼  (1/( (√n)))(1−(((−1)^n )/(2n)))  and   ((cosn)/( (√( n+(−1)^n ))))∼   ((cosn)/( (√n)))−(((−1)^n )/(2n)) +o((1/(n))))  the serie Σ_(n≥1) ((cosn)/( (√n))) is convergente due to abel dirichlet   theorem having r=1 for radius also Σ_(n≥1) (((−1)^n )/(2n)) is convergente  having r=1 for radius⇒  Σ_(n≥2) ((cosn)/( (√(n+(−1)^n )))) z^n  is convergente  having r≤1  for radius of convergence.
$${we}\:{have}\:\:\:\frac{\mathrm{1}}{\:\sqrt{{n}+\left(−\mathrm{1}\right)^{{n}} }}\:=\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\:\frac{\mathrm{1}}{\:\sqrt{\:\mathrm{1}+\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}}} \\ $$$$=\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\left(\mathrm{1}+\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:{but}\:{we}\:{know}?{that}\:\:\left(\mathrm{1}+{u}\right)^{\alpha} \sim_{\alpha\in{v}\left(\mathrm{0}\right)} \:\:\mathrm{1}+\alpha{u} \\ $$$$\sim\:\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\left(\mathrm{1}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}}\right)\:\:{and}\:\:\:\frac{{cosn}}{\:\sqrt{\:{n}+\left(−\mathrm{1}\right)^{{n}} }}\sim\:\:\:\frac{{cosn}}{\:\sqrt{{n}}}−\frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}}\:+{o}\left(\frac{\mathrm{1}}{\left.{n}\right)}\right) \\ $$$${the}\:{serie}\:\sum_{{n}\geqslant\mathrm{1}} \frac{{cosn}}{\:\sqrt{{n}}}\:{is}\:{convergente}\:{due}\:{to}\:{abel}\:{dirichlet}\: \\ $$$${theorem}\:{having}\:{r}=\mathrm{1}\:{for}\:{radius}\:{also}\:\sum_{{n}\geqslant\mathrm{1}} \frac{\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}{n}}\:{is}\:{convergente} \\ $$$${having}\:{r}=\mathrm{1}\:{for}\:{radius}\Rightarrow\:\:\sum_{{n}\geqslant\mathrm{2}} \frac{{cosn}}{\:\sqrt{{n}+\left(−\mathrm{1}\right)^{{n}} }}\:{z}^{{n}} \:{is}\:{convergente} \\ $$$${having}\:{r}\leqslant\mathrm{1}\:\:{for}\:{radius}\:{of}\:{convergence}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *