Menu Close

study-the-vonvergence-of-1-e-1-t-cos-1-t-t-dt-




Question Number 36185 by prof Abdo imad last updated on 30/May/18
study the vonvergence of   ∫_1 ^(+∞)   ((e^(−(1/t))  −cos((1/t)))/t)dt
$${study}\:{the}\:{vonvergence}\:{of}\: \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{−\frac{\mathrm{1}}{{t}}} \:−{cos}\left(\frac{\mathrm{1}}{{t}}\right)}{{t}}{dt} \\ $$
Commented by maxmathsup by imad last updated on 19/Aug/18
the function is continue at x_0  =1  let see what happen at +∞  channgement  (1/t)=x give  ∫_1 ^(+∞)   ((e^(−(1/t))  −cos((1/t)))/t) dt  = −∫_0 ^1    ((e^(−x)  −cosx)/(1/x))  ((−dx)/x^2 )  =−∫_0 ^1    ((e^(−x)  −cosx)/x) dx = ∫_0 ^1      ((cosx−e^(−x) )/x) dx  but  cosx ∼1−(x^2 /2)  and e^(−x)  ∼ 1−x  (x→0) ⇒cosx −e^(−x)  ∼−(x^2 /2) +x ⇒  ((cosx −e^(−x) )/3)  ∼  −(x/2) +1 →1 when x→0 so  ∫_0 ^1   ((cosx −e^(−x) )/x) dx converges.
$${the}\:{function}\:{is}\:{continue}\:{at}\:{x}_{\mathrm{0}} \:=\mathrm{1}\:\:{let}\:{see}\:{what}\:{happen}\:{at}\:+\infty \\ $$$${channgement}\:\:\frac{\mathrm{1}}{{t}}={x}\:{give} \\ $$$$\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{e}^{−\frac{\mathrm{1}}{{t}}} \:−{cos}\left(\frac{\mathrm{1}}{{t}}\right)}{{t}}\:{dt}\:\:=\:−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{−{x}} \:−{cosx}}{\frac{\mathrm{1}}{{x}}}\:\:\frac{−{dx}}{{x}^{\mathrm{2}} } \\ $$$$=−\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\frac{{e}^{−{x}} \:−{cosx}}{{x}}\:{dx}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\:\frac{{cosx}−{e}^{−{x}} }{{x}}\:{dx}\:\:{but} \\ $$$${cosx}\:\sim\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:\:{and}\:{e}^{−{x}} \:\sim\:\mathrm{1}−{x}\:\:\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow{cosx}\:−{e}^{−{x}} \:\sim−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}\:+{x}\:\Rightarrow \\ $$$$\frac{{cosx}\:−{e}^{−{x}} }{\mathrm{3}}\:\:\sim\:\:−\frac{{x}}{\mathrm{2}}\:+\mathrm{1}\:\rightarrow\mathrm{1}\:{when}\:{x}\rightarrow\mathrm{0}\:{so}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{cosx}\:−{e}^{−{x}} }{{x}}\:{dx}\:{converges}. \\ $$
Commented by maxmathsup by imad last updated on 19/Aug/18
((cosx −e^(−x) )/2) ∼ 1−(x/2) →1(x→0)...
$$\frac{{cosx}\:−{e}^{−{x}} }{\mathrm{2}}\:\sim\:\mathrm{1}−\frac{{x}}{\mathrm{2}}\:\rightarrow\mathrm{1}\left({x}\rightarrow\mathrm{0}\right)… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *