Question Number 54741 by gunawan last updated on 10/Feb/19

Commented by Abdo msup. last updated on 10/Feb/19

Answered by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19
![1)(1+x)^n =nc_0 +nc_1 x+nc_2 x^2 +...+nc_n x^n (1+(1/x))^n =nc_0 +nc_1 ×(1/x)+nc_2 ×(1/x^2 )+..+nc_n ×(1/x^n ) multiply right hand side and take x independent terms.. (nc_0 )^2 +(nc_1 )^2 +(nc_2 )^2 +...+(nc_n )^2 multiply left hand side and take the coefficient of xindepent terms (1+x)^n ×(1+(1/x))^n =(1+x)^n ×(1+x)^n ×(1/x^n ) =x^(−n) (1+x)^(2n) let( r+1)th term of (1+x)^(2n) contains x^n t_(r+1) =2nc_r (x)^r hence x^r =x^n r=n t_(n+1) =2nc_n (x)^n contains x^n x^(−n) ×2nc_n x^n =2nc_n →x independendent... (nc_0 )^2 +(nc_1 )^2 +..(nc_n )^2 =2nc_n =(((2n)!)/(n!×n!)) 2)∫_0 ^1 (1+x)^n dx=∫_0 ^1 [nc_0 +nc_1 x+nc_2 x^2 +...+nc_n x^n ]dx ∣(((1+x)^(n+1) )/(n+1))∣_0 ^1 =∣nc_0 x+(1/2)nc_1 x^2 +(1/3)nc_2 x^3 +..+(1/(n+1))nc_n x^(n+1) ∣_0 ^1 ((2^(n+1) −1)/(n+1))=nc_0 +(1/2)nc_1 +(1/3)nc_2 +...+(1/(n+1))nc_n](https://www.tinkutara.com/question/Q54753.png)
Commented by gunawan last updated on 10/Feb/19

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19
