Menu Close

such-that-1-n-0-2-n-1-2-n-n-2-2n-n-2-2-n-0-1-2-n-1-1-n-1-n-n-2-2-n-1-1-n-1-




Question Number 54741 by gunawan last updated on 10/Feb/19
such that  1. ((n),(0) )^2 + ((n),(1) )^2 +...+ ((n),(n) )^2 =(((2n)!)/((n!)^2 ))  2.  ((n),(0) )+(1/2) ((n),(1) )+...+(1/(n+1)) ((n),(n) )^2 =((2^(n+1) −1)/(n+1))
suchthat1.(n0)2+(n1)2++(nn)2=(2n)!(n!)22.(n0)+12(n1)++1n+1(nn)2=2n+11n+1
Commented by Abdo msup. last updated on 10/Feb/19
1) we have (1+x)^(2n) =Σ_(k=0) ^n  C_(2n) ^k  x^k   and  (1+x)^(2n) =(1+x)^n (1+x)^n =(Σ_(k=0) ^n  C_n ^k x^k )(Σ_(k=0) ^n  C_n ^k  x^k )  =Σ_(k=0) ^(2n)  c_k  x^(2k)    with c_k =Σ_(i+j =k)  a_i b_j   =Σ_(i=0) ^k  a_i b_(k−i)  =Σ_(i=0) ^k  C_n ^i  C_n ^(k−i)  =Σ_(i=0) ^k (C_n ^i )^2  ⇒  c_n =Σ_(i=0) ^n ( C_n ^i )^2   but c_n  is the coefficient of x^(2n)   in the  expantion of (1+x)^(2n)  ⇒c_n =C_(2n) ^n  =(((2n)!)/((n!)^2 )) ⇒  (C_n ^0 )^2  +(C_n ^1 )^2  +(C_n ^3 )^2  +...+(C_n ^n )^2  =(((2n)!)/((n!)^2 )) .
1)wehave(1+x)2n=k=0nC2nkxkand(1+x)2n=(1+x)n(1+x)n=(k=0nCnkxk)(k=0nCnkxk)=k=02nckx2kwithck=i+j=kaibj=i=0kaibki=i=0kCniCnki=i=0k(Cni)2cn=i=0n(Cni)2butcnisthecoefficientofx2nintheexpantionof(1+x)2ncn=C2nn=(2n)!(n!)2(Cn0)2+(Cn1)2+(Cn3)2++(Cnn)2=(2n)!(n!)2.
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19
1)(1+x)^n =nc_0 +nc_1 x+nc_2 x^2 +...+nc_n x^n   (1+(1/x))^n =nc_0 +nc_1 ×(1/x)+nc_2 ×(1/x^2 )+..+nc_n ×(1/x^n )  multiply  right hand side and take x independent  terms..  (nc_0 )^2 +(nc_1 )^2 +(nc_2 )^2 +...+(nc_n )^2   multiply left hand side and take the coefficient  of xindepent terms  (1+x)^n ×(1+(1/x))^n   =(1+x)^n ×(1+x)^n ×(1/x^n )  =x^(−n) (1+x)^(2n)   let( r+1)th term of (1+x)^(2n) contains x^n   t_(r+1) =2nc_r (x)^r   hence x^r =x^n   r=n     t_(n+1) =2nc_n (x)^n  contains x^n   x^(−n) ×2nc_n x^n   =2nc_n →x independendent...  (nc_0 )^2 +(nc_1 )^2 +..(nc_n )^2 =2nc_n =(((2n)!)/(n!×n!))    2)∫_0 ^1 (1+x)^n dx=∫_0 ^1 [nc_0 +nc_1 x+nc_2 x^2 +...+nc_n x^n ]dx  ∣(((1+x)^(n+1) )/(n+1))∣_0 ^1 =∣nc_0 x+(1/2)nc_1 x^2 +(1/3)nc_2 x^3 +..+(1/(n+1))nc_n x^(n+1) ∣_0 ^1   ((2^(n+1) −1)/(n+1))=nc_0 +(1/2)nc_1 +(1/3)nc_2 +...+(1/(n+1))nc_n
1)(1+x)n=nc0+nc1x+nc2x2++ncnxn(1+1x)n=nc0+nc1×1x+nc2×1x2+..+ncn×1xnmultiplyrighthandsideandtakexindependentterms..(nc0)2+(nc1)2+(nc2)2++(ncn)2multiplylefthandsideandtakethecoefficientofxindepentterms(1+x)n×(1+1x)n=(1+x)n×(1+x)n×1xn=xn(1+x)2nlet(r+1)thtermof(1+x)2ncontainsxntr+1=2ncr(x)rhencexr=xnr=ntn+1=2ncn(x)ncontainsxnxn×2ncnxn=2ncnxindependendent(nc0)2+(nc1)2+..(ncn)2=2ncn=(2n)!n!×n!2)01(1+x)ndx=01[nc0+nc1x+nc2x2++ncnxn]dx(1+x)n+1n+101=∣nc0x+12nc1x2+13nc2x3+..+1n+1ncnxn+1012n+11n+1=nc0+12nc1+13nc2++1n+1ncn
Commented by gunawan last updated on 10/Feb/19
wow thank you very much Sir
wowthankyouverymuchSir
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Feb/19
most welcome...
mostwelcome

Leave a Reply

Your email address will not be published. Required fields are marked *