Menu Close

Such-That-a-n-1-C-r-n-1-n-C-r-n-r-1-b-n-C-0-n-C-2-n-C-4-n-C-1-n-C-3-n-C-5-2-n-1-




Question Number 54646 by gunawan last updated on 08/Feb/19
Such That  a. _(n+1) C_r =(((n+1). _n C_r )/((n−r+1)))  b. _n C_0 +_n C_2 +_n C_(4...) =_n C_1 +_n C_3 +_n C_(5...) =2^(n−1)
SuchThata.n+1Cr=(n+1).nCr(nr+1)b.nC0+nC2+nC4=nC1+nC3+nC5=2n1
Answered by Kunal12588 last updated on 08/Feb/19
LHS=^(n+1) C_r =(((n+1)!)/(r!(n+1−r)!))  =(((n+1)n!)/(r!(n+1−r)(n−r)!))=((n+1)/(n−r+1))×((n!)/(r!(n−r)!))  =(((n+1) ^n C_r )/((n+1−r)))=RHS   proved
LHS=n+1Cr=(n+1)!r!(n+1r)!=(n+1)n!r!(n+1r)(nr)!=n+1nr+1×n!r!(nr)!=(n+1)nCr(n+1r)=RHSproved
Commented by gunawan last updated on 08/Feb/19
thank you Sir
thankyouSir
Answered by Kunal12588 last updated on 10/Feb/19
b.  from binimial expansion  0^n =(1−1)^n   ⇒0=^n C_0 −^n C_1 +^n C_2 −.....+(−1)^n  ∙^n C_n   ⇒^n C_0 +^n C_2 +^n C_4 +....=^n C_1 +^n C_3 +^n C_5 +....    eq(1)  LHS  of eq(1)  ^n C_0 +^n C_2 +^n C_4 +....  =^(n−1) C_0 +^(n−1) C_1 +^(n−1) C_2 +^(n−1) C_3 +^(n−1) C_4 +...  =2^(n−1)     proved  I used the identities (1) and (3)  from   question 54740 see carefully
b.frombinimialexpansion0n=(11)n0=nC0nC1+nC2..+(1)nnCnnC0+nC2+nC4+.=nC1+nC3+nC5+.eq(1)LHSofeq(1)nC0+nC2+nC4+.=n1C0+n1C1+n1C2+n1C3+n1C4+=2n1provedIusedtheidentities(1)and(3)fromquestion54740seecarefully

Leave a Reply

Your email address will not be published. Required fields are marked *