Menu Close

sum-of-this-series-1-3-5-3-5-7-5-7-9-up-to-n-terms-




Question Number 40254 by scientist last updated on 17/Jul/18
sum of this series:  1.3.5+3.5.7+5.7.9+...up to n terms
sumofthisseries:1.3.5+3.5.7+5.7.9+uptonterms
Commented by maxmathsup by imad last updated on 18/Jul/18
Σ_(k=0) ^n  (2k+1)(2k+3)(2k+5)=1.3.5 +3.5.7 +5.7.9+....+(2n+1)(2n+3)(2n+5)  =S_n   S_n = Σ_(k=0) ^n (4k^2  +6k +2k+3)(2k+5)  =Σ_(k=0) ^n (4k^2  +8k+3)(2k+5)  =Σ_(k=0) ^n  (8k^3  +20k^2  +16k^2  +40k +6k +15)  =Σ_(k=0) ^n (8k^3  +32k^2  +46k +15)  =8Σ_(k=0) ^n  k^3   +32 Σ_(k=0) ^n  k^2  +46 Σ_(k=0) ^n k +15 Σ_(k=0) ^n (1)  =8 ((n^2 (n+1)^2 )/4)  +32 ((n(n+1)(2n+1))/6) +46 ((n(n+1))/2)  +15n  =2n^2 (n+1)^2   + ((16)/3) n(n+1)(2n+1) +23n(n+1)  +15n .
k=0n(2k+1)(2k+3)(2k+5)=1.3.5+3.5.7+5.7.9+.+(2n+1)(2n+3)(2n+5)=SnSn=k=0n(4k2+6k+2k+3)(2k+5)=k=0n(4k2+8k+3)(2k+5)=k=0n(8k3+20k2+16k2+40k+6k+15)=k=0n(8k3+32k2+46k+15)=8k=0nk3+32k=0nk2+46k=0nk+15k=0n(1)=8n2(n+1)24+32n(n+1)(2n+1)6+46n(n+1)2+15n=2n2(n+1)2+163n(n+1)(2n+1)+23n(n+1)+15n.
Commented by scientist last updated on 18/Jul/18
but can′t we use  Tn=n(n+2)(n+4)
butcantweuseTn=n(n+2)(n+4)
Commented by maxmathsup by imad last updated on 18/Jul/18
no  look sir   Σ_(k=1) ^n  T_k =Σ_(k=1) ^n k(k+2)(k+4)= 1.3.4  +2.4.6 +...  and this sum is totally differnt from the sum given in the question...
nolooksirk=1nTk=k=1nk(k+2)(k+4)=1.3.4+2.4.6+andthissumistotallydifferntfromthesumgiveninthequestion

Leave a Reply

Your email address will not be published. Required fields are marked *