Menu Close

Sum-the-series-sin-2-sin-2-2-sin-2-3-sin-2-n-




Question Number 56602 by Tawa1 last updated on 19/Mar/19
Sum the series:                            sin^2 (α) + sin^2 (2α) + sin^2 (3α) + ... + sin^2 (nα)
Sumtheseries:sin2(α)+sin2(2α)+sin2(3α)++sin2(nα)
Commented by maxmathsup by imad last updated on 26/Mar/19
let S_n =Σ_(k=1) ^n  sin^2 (kα) ⇒S_n =Σ_(k=1) ^n ((1−cos(2kα))/2)  =(n/2) −(1/2)Σ_(k=1) ^n  cos(2kα) but   Σ_(k=1) ^n  cos(2kα) =Σ_(k=0) ^n  cos(2kα)−1 =Re(Σ_(k=0) ^n  e^(i2kα) )−1  Σ_(k=0) ^n  e^(i2kα)   =Σ_(k=0) ^n  (e^(i2α) )^k  =((1−e^(i2(n+1)α) )/(1−e^(i2α) ))  (if  e^(i2α) ≠1)  =((1−cos2(n+1)α−isin2(n+1)α)/(1−cos(2α)−isin(2α))) = ((2sin^2 (n+1)α −2isin((n+1)α) cos((n+1)α))/(2sin^2 α −2i sinα cosα))  =((−i sin(n+1)α{cos(n+1)α +i sin(n+1)α)/(−isinα{ cosα +isinα})) =((sin(n+1)α)/(sinα)) e^(i(n+1)α)  e^(−iα)   =((sin(n+1)α)/(sinα)) e^(inα)  =((sin(n+1)α)/(sinα)){cos(nα)+isin(nα)} ⇒  Σ_(k=1) ^n  cos(2kα) =((sin(n+1)α cos(nα))/(sinα)) −1 ⇒  S_n =(n/2) −(1/2)( ((sin(n+1)α cos(nα))/(sinα)) −1) =((n+1)/2) −((sin(n+1)α cos(nα))/(2sinα))  if e^(i2α)  ≠1 .
letSn=k=1nsin2(kα)Sn=k=1n1cos(2kα)2=n212k=1ncos(2kα)butk=1ncos(2kα)=k=0ncos(2kα)1=Re(k=0nei2kα)1k=0nei2kα=k=0n(ei2α)k=1ei2(n+1)α1ei2α(ifei2α1)=1cos2(n+1)αisin2(n+1)α1cos(2α)isin(2α)=2sin2(n+1)α2isin((n+1)α)cos((n+1)α)2sin2α2isinαcosα=isin(n+1)α{cos(n+1)α+isin(n+1)αisinα{cosα+isinα}=sin(n+1)αsinαei(n+1)αeiα=sin(n+1)αsinαeinα=sin(n+1)αsinα{cos(nα)+isin(nα)}k=1ncos(2kα)=sin(n+1)αcos(nα)sinα1Sn=n212(sin(n+1)αcos(nα)sinα1)=n+12sin(n+1)αcos(nα)2sinαifei2α1.
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Mar/19
T_n =sin^2 (nα)  T_n =((1−cos2nα)/2)  =(1/2)−(1/2)(cos2nα)  T_1 =(1/2)−(1/2)(cos2α)  T_2 =(1/2)−(1/2)(cos4α)  T_3 =(1/2)−(1/2)(cos6α)  ...  ...  T_n =(1/2)−(1/2)(cos2nα)  S=n×(1/2)−(1/2)(cos2α+cos4α+cos6α+...+cos2nα)  S=(n/2)−(p/2)  p=cos2α+cos4α+cos6α+...+cos2nα  2cos2αsinα=sin3α−sinα  2cos4αsinα=sin5α−sin3α  2cos6αsinα=sin7α−sin5α  ...  ...  2cos2nαsinα=sin(2n+1)α−sin(2n−1)α  add them  2sinα(cos2α+cos4α+..+cos2nα)=sin(2n+1)α−sinα  2sinα×p=sin(2n+1)α−sinα  p=((sin(2n+1)α−sinα)/(2sinα))  So S=(n/2)−(p/2)  =(n/2)−((sin(2n+1)α−sinα)/(4sinα))  pls check...
Tn=sin2(nα)Tn=1cos2nα2=1212(cos2nα)T1=1212(cos2α)T2=1212(cos4α)T3=1212(cos6α)Tn=1212(cos2nα)S=n×1212(cos2α+cos4α+cos6α++cos2nα)S=n2p2p=cos2α+cos4α+cos6α++cos2nα2cos2αsinα=sin3αsinα2cos4αsinα=sin5αsin3α2cos6αsinα=sin7αsin5α2cos2nαsinα=sin(2n+1)αsin(2n1)αaddthem2sinα(cos2α+cos4α+..+cos2nα)=sin(2n+1)αsinα2sinα×p=sin(2n+1)αsinαp=sin(2n+1)αsinα2sinαSoS=n2p2=n2sin(2n+1)αsinα4sinαplscheck
Commented by maxmathsup by imad last updated on 19/Mar/19
be careful α here is in radian not in degre...
becarefulαhereisinradiannotindegre
Commented by Tawa1 last updated on 19/Mar/19
Thanks sir.
Thankssir.
Commented by Tawa1 last updated on 19/Mar/19
Then it will be stated that where  α is in degree, can it ?
Thenitwillbestatedthatwhereαisindegree,canit?
Commented by Tawa1 last updated on 19/Mar/19
I used this question   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)  to form the question above sir ....
Iusedthisquestionsin2(1)+sin2(2)+sin2(3)++sin2(89)+sin2(90)toformthequestionabovesir.
Commented by Tawa1 last updated on 19/Mar/19
Correct sir.     sin^2 (α) + sin^2 (2α) + sin^2 (3α) + ... + sin^2 (nα)  =  (n/2) − ((sin(2n + 1)α − sin(α))/(4sin(α)))  where  α  =  1   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)                                                                                               =  ((90)/2) − ((sin[2(90) + 1] − sin(1))/(4 sin(1)))   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)                                                                                               =  ((90)/2) − ((sin(180) − sin(1))/(4 sin(1)))   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)  =  ((90)/2) − (− (1/2))   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)  =  45 + 0.5   sin^2 (1) + sin^2 (2) + sin^2 (3) + ... + sin^2 (89) + sin^2 (90)  =  45.5    Same as what you got earlier and sir  mrW.
Correctsir.sin2(α)+sin2(2α)+sin2(3α)++sin2(nα)=n2sin(2n+1)αsin(α)4sin(α)whereα=1sin2(1)+sin2(2)+sin2(3)++sin2(89)+sin2(90)=902sin[2(90)+1]sin(1)4sin(1)sin2(1)+sin2(2)+sin2(3)++sin2(89)+sin2(90)=902sin(180)sin(1)4sin(1)sin2(1)+sin2(2)+sin2(3)++sin2(89)+sin2(90)=902(12)sin2(1)+sin2(2)+sin2(3)++sin2(89)+sin2(90)=45+0.5sin2(1)+sin2(2)+sin2(3)++sin2(89)+sin2(90)=45.5SameaswhatyougotearlierandsirmrW.

Leave a Reply

Your email address will not be published. Required fields are marked *