Menu Close

super-nice-show-that-6-pi-6-945-




Question Number 127020 by bramlexs22 last updated on 26/Dec/20
  super nice !             show that              ζ(6) = (π^6 /(945))
supernice!showthatζ(6)=π6945
Commented by liberty last updated on 26/Dec/20
hahaha very nice
hahahaverynice
Answered by Olaf last updated on 26/Dec/20
ζ(2k) = (((−1)^(k−1) B_(2k) (2π)^(2k) )/(2(2k)!))  For k = 3 :  ζ(6) = (((−1)^2 B_6 (2π)^6 )/(2×6!)) = (2/(45))B_6 π^6   B_6  = (1/(42))  ζ(6) = (2/(45))×(1/(42))π^6  = (π^6 /(945))
ζ(2k)=(1)k1B2k(2π)2k2(2k)!Fork=3:ζ(6)=(1)2B6(2π)62×6!=245B6π6B6=142ζ(6)=245×142π6=π6945
Answered by Dwaipayan Shikari last updated on 26/Dec/20
ζ(2n)=(((−1)^(n+1) (2π)^(2n) )/(2(2n)!))B_(2n)   ζ(6)=(((2π)^6 )/(2.6!)).(1/(42))=(π^6 /(15.63))=(π^6 /(945))  ζ(8)=(π^8 /(9450))  ζ(10)=(π^(10) /(93555))  ....
ζ(2n)=(1)n+1(2π)2n2(2n)!B2nζ(6)=(2π)62.6!.142=π615.63=π6945ζ(8)=π89450ζ(10)=π1093555.
Commented by Dwaipayan Shikari last updated on 26/Dec/20
((sinπx)/(πx))=Π^∞ (1−(x^2 /n^2 ))  log(sinπx)−log(πx)=Σ_(n=1) ^∞ log(1−(x^2 /n^2 ))  π((cosπx)/(sinπx))−(π/(πx))=Σ_(n=1) ^∞ ((−((2x)/n^2 ))/(1−(x^2 /n^2 )))⇒πcot(πx)−(1/x)=Σ_(n=1) ^∞ ((2x)/(x^2 −n^2 ))  ⇒πxcot(πx)=1−2Σ_(n=1) ^∞ ((x^2 /n^2 )/(1−(x^2 /n^2 )))⇒πxcot(πx)=1−2Σ_(n=1) ^∞ Σ_(k=1) ^∞ ((x/n))^(2k)   ⇒πxcot(πx)=1−2Σ_(k=1) ^∞ ζ(2k)x^(2k) ⇒πxi(((e^(πxi) +e^(−πxi) )/(e^(πxi) −e^(−πxi) )))=1−2Σ^∞ ζ(2k)x^(2k)   ⇒πxi+((2πxi)/(e^(2πxi) −1))=1−2Σ_(k≥1) ^∞ ζ(2k)x^(2k) ⇒1−Σ_(k≥0) ^∞ (β_(2k) /(2(2k!)))(2πix)^(2k)   ζ(2k)x^(2k) =(β_(2k) /(2(2k!)))(2πix)^(2k) ⇒ζ(2k)=(−1)^(k+1) ((β_(2k) (2π)^(2k) )/(2(2k!)))
sinπxπx=(1x2n2)log(sinπx)log(πx)=n=1log(1x2n2)πcosπxsinπxππx=n=12xn21x2n2πcot(πx)1x=n=12xx2n2πxcot(πx)=12n=1x2n21x2n2πxcot(πx)=12n=1k=1(xn)2kπxcot(πx)=12k=1ζ(2k)x2kπxi(eπxi+eπxieπxieπxi)=12ζ(2k)x2kπxi+2πxie2πxi1=12k1ζ(2k)x2k1k0β2k2(2k!)(2πix)2kζ(2k)x2k=β2k2(2k!)(2πix)2kζ(2k)=(1)k+1β2k(2π)2k2(2k!)
Commented by mnjuly1970 last updated on 26/Dec/20
very nice  mr  payan  solution  with explanation..
verynicemrpayansolutionwithexplanation..
Answered by liberty last updated on 26/Dec/20
via Fourier sine series    b_n =(2/π)∫_0 ^( π) (πx−x^2 )sin (nx) dx = (4/π).((1−(−1)^(n+1) )/n^3 )   b_n  =  { ((0 ; if n is odd)),(((8/(πn^3 )) ; if n even )) :}   writting n=2k−1 for some positive integer k  we get πx−x^2  ∼ Σ_(k=1) ^∞  ((8sin ((2k−1)x))/(π(2k−1)^3 ))   (2/π)∫_0 ^( π) (πx−x^2 )^2  dx = Σ_(k=1) ^∞ ((8/(π(2k−1)^3 )))^2   simplifying this yields  (π^4 /(15)) = ((64)/π^2 ) Σ_(k=1) ^∞ ((1/(2k−1)))^6  and Σ_(k=1) ^∞ (1/((2k−1)^6 )) = (π^6 /(960))  however   Σ_(k=1) ^∞ (1/((2k−1)^6 )) = Σ_(n=1) ^∞ (1/n^6 ) − Σ_(n=1) ^∞ (1/(2n)) = (1−(1/2^6 ))Σ_(n=1) ^∞  (1/n^6 )                    = ((63)/(64)) ζ(6)  ζ(6) = ((64)/(63)).(π^6 /(960)) = (π^6 /(945)).
viaFouriersineseriesbn=2π0π(πxx2)sin(nx)dx=4π.1(1)n+1n3bn={0;ifnisodd8πn3;ifnevenwrittingn=2k1forsomepositiveintegerkwegetπxx2k=18sin((2k1)x)π(2k1)32π0π(πxx2)2dx=k=1(8π(2k1)3)2simplifyingthisyieldsπ415=64π2k=1(12k1)6andk=11(2k1)6=π6960howeverk=11(2k1)6=n=11n6n=112n=(1126)n=11n6=6364ζ(6)ζ(6)=6463.π6960=π6945.
Commented by mnjuly1970 last updated on 26/Dec/20
very nice bravo mr   liberty   excellent...
verynicebravomrlibertyexcellent

Leave a Reply

Your email address will not be published. Required fields are marked *