Menu Close

Suppose-A-1-A-2-A-20-is-a-20-sided-regular-polygon-How-many-non-isosceles-scalene-triangles-can-be-formed-whose-vertices-are-among-the-vertices-of-the-polygon-but-whose-sides-are-not-the-side




Question Number 21683 by Tinkutara last updated on 30/Sep/17
Suppose A_1 A_2 ...A_(20)  is a 20-sided regular  polygon. How many non-isosceles  (scalene) triangles can be formed whose  vertices are among the vertices of the  polygon but whose sides are not the  sides of the polygon?
$$\mathrm{Suppose}\:{A}_{\mathrm{1}} {A}_{\mathrm{2}} …{A}_{\mathrm{20}} \:\mathrm{is}\:\mathrm{a}\:\mathrm{20}-\mathrm{sided}\:\mathrm{regular} \\ $$$$\mathrm{polygon}.\:\mathrm{How}\:\mathrm{many}\:\mathrm{non}-\mathrm{isosceles} \\ $$$$\left(\mathrm{scalene}\right)\:\mathrm{triangles}\:\mathrm{can}\:\mathrm{be}\:\mathrm{formed}\:\mathrm{whose} \\ $$$$\mathrm{vertices}\:\mathrm{are}\:\mathrm{among}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{polygon}\:\mathrm{but}\:\mathrm{whose}\:\mathrm{sides}\:\mathrm{are}\:\mathrm{not}\:\mathrm{the} \\ $$$$\mathrm{sides}\:\mathrm{of}\:\mathrm{the}\:\mathrm{polygon}? \\ $$
Commented by alex041103 last updated on 30/Sep/17
Isn′t it 780?
$${Isn}'{t}\:{it}\:\mathrm{780}? \\ $$
Commented by Tinkutara last updated on 03/Oct/17
No. 780 is wrong.
$$\mathrm{No}.\:\mathrm{780}\:\mathrm{is}\:\mathrm{wrong}. \\ $$
Answered by Tinkutara last updated on 07/Oct/17
Let 2n be the number of sides of the  regular polygon. Then number of  scalene triangles are given by  ^(2n) C_3  − 2n(2n − 4) − 2n(n − 1)  So here it gives^(20) C_3 −20×16−20×9  =1140−320−180=640
$${Let}\:\mathrm{2}{n}\:{be}\:{the}\:{number}\:{of}\:{sides}\:{of}\:{the} \\ $$$${regular}\:{polygon}.\:{Then}\:{number}\:{of} \\ $$$${scalene}\:{triangles}\:{are}\:{given}\:{by} \\ $$$$\:^{\mathrm{2}{n}} {C}_{\mathrm{3}} \:−\:\mathrm{2}{n}\left(\mathrm{2}{n}\:−\:\mathrm{4}\right)\:−\:\mathrm{2}{n}\left({n}\:−\:\mathrm{1}\right) \\ $$$${So}\:{here}\:{it}\:{gives}\:^{\mathrm{20}} {C}_{\mathrm{3}} −\mathrm{20}×\mathrm{16}−\mathrm{20}×\mathrm{9} \\ $$$$=\mathrm{1140}−\mathrm{320}−\mathrm{180}=\mathrm{640} \\ $$
Commented by Tinkutara last updated on 07/Oct/17
I don′t know the reason behind this  formula. Can somebody elaborate  please?
$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{the}\:\mathrm{reason}\:\mathrm{behind}\:\mathrm{this} \\ $$$$\mathrm{formula}.\:\mathrm{Can}\:\mathrm{somebody}\:\mathrm{elaborate} \\ $$$$\mathrm{please}? \\ $$
Commented by alex041103 last updated on 07/Oct/17
Ok. Can I explane it to you by a photo.
$${Ok}.\:{Can}\:{I}\:{explane}\:{it}\:{to}\:{you}\:{by}\:{a}\:{photo}. \\ $$
Commented by Tinkutara last updated on 07/Oct/17
Sure.
$$\mathrm{Sure}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *