Menu Close

suppose-a-force-given-as-F-1-24-N-and-F-2-50-N-act-through-points-AB-and-AC-where-OA-2i-3j-OB-5i-6j-and-OC-7i-8j-a-find-in-vector-notation-F-1-and-F-2-then-find-thier-result




Question Number 98208 by Rio Michael last updated on 12/Jun/20
suppose a force given as F_1  = 24 N and F_2  = 50 N act through   points AB and AC where  OA = 2i +3j , OB = 5i + 6j  and   OC = 7i + 8j  (a) find in vector notation F_1  and F_2   then find thier resultant.
$$\mathrm{suppose}\:\mathrm{a}\:\mathrm{force}\:\mathrm{given}\:\mathrm{as}\:{F}_{\mathrm{1}} \:=\:\mathrm{24}\:{N}\:\mathrm{and}\:{F}_{\mathrm{2}} \:=\:\mathrm{50}\:{N}\:\mathrm{act}\:\mathrm{through}\: \\ $$$$\mathrm{points}\:{AB}\:\mathrm{and}\:{AC}\:\mathrm{where}\:\:{OA}\:=\:\mathrm{2}{i}\:+\mathrm{3}{j}\:,\:{OB}\:=\:\mathrm{5}{i}\:+\:\mathrm{6}{j}\:\:\mathrm{and}\: \\ $$$${OC}\:=\:\mathrm{7}{i}\:+\:\mathrm{8}{j} \\ $$$$\left(\mathrm{a}\right)\:\mathrm{find}\:\mathrm{in}\:\mathrm{vector}\:\mathrm{notation}\:{F}_{\mathrm{1}} \:\mathrm{and}\:{F}_{\mathrm{2}} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{thier}\:\mathrm{resultant}. \\ $$
Commented by mr W last updated on 12/Jun/20
AB=OB−OA=3i+3j  F_1 =∣F_1 ∣×((AB)/(∣AB∣))=12(√2)(i+j)  AC=OC−OA=5i+5j  F_2 =∣F_2 ∣×((AB)/(∣AB∣))=25(√2)(i+j)  F_1 +F_2 =(12+25)(√2)(i+j)=37(√2)(i+j)  ∣F_1 +F_2 ∣=37(√2)(√(1^2 +1^2 ))=74 KN
$${AB}={OB}−{OA}=\mathrm{3}{i}+\mathrm{3}{j} \\ $$$$\boldsymbol{{F}}_{\mathrm{1}} =\mid{F}_{\mathrm{1}} \mid×\frac{{AB}}{\mid{AB}\mid}=\mathrm{12}\sqrt{\mathrm{2}}\left({i}+{j}\right) \\ $$$${AC}={OC}−{OA}=\mathrm{5}{i}+\mathrm{5}{j} \\ $$$$\boldsymbol{{F}}_{\mathrm{2}} =\mid{F}_{\mathrm{2}} \mid×\frac{{AB}}{\mid{AB}\mid}=\mathrm{25}\sqrt{\mathrm{2}}\left({i}+{j}\right) \\ $$$$\boldsymbol{{F}}_{\mathrm{1}} +\boldsymbol{{F}}_{\mathrm{2}} =\left(\mathrm{12}+\mathrm{25}\right)\sqrt{\mathrm{2}}\left({i}+{j}\right)=\mathrm{37}\sqrt{\mathrm{2}}\left({i}+{j}\right) \\ $$$$\mid\boldsymbol{{F}}_{\mathrm{1}} +\boldsymbol{{F}}_{\mathrm{2}} \mid=\mathrm{37}\sqrt{\mathrm{2}}\sqrt{\mathrm{1}^{\mathrm{2}} +\mathrm{1}^{\mathrm{2}} }=\mathrm{74}\:{KN} \\ $$
Commented by Rio Michael last updated on 12/Jun/20
thanks for that
$$\mathrm{thanks}\:\mathrm{for}\:\mathrm{that} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *