Menu Close

Suppose-an-integer-x-a-natural-number-n-and-a-prime-number-p-satisfy-the-equation-7x-2-44x-12-p-n-Find-the-largest-value-of-p-




Question Number 21200 by Tinkutara last updated on 15/Sep/17
Suppose an integer x, a natural  number n and a prime number p  satisfy the equation 7x^2  − 44x + 12 = p^n .  Find the largest value of p.
Supposeanintegerx,anaturalnumbernandaprimenumberpsatisfytheequation7x244x+12=pn.Findthelargestvalueofp.
Commented by mrW1 last updated on 16/Sep/17
47?
47?
Answered by alex041103 last updated on 16/Sep/17
7x^2 −44x+12=(x−6)(7x−2)=p^n   ⇒x−6=p^n_1   and 7x−2=p^n_2   and n_1 +n_2 =n  ⇒x=p^n_1  +6 and 7p^n_1  +40=p^n_2    ⇒n_1 <n_2   ⇒7+((40)/p^n_1  ) is a whole number  ⇒p^n_1   is a divisor of 40=2^3 ×5^1 ×(som num)^0   (p,n_1 )=(p,0),(5,1),(2,3)  Now we try p=5 or 2 and it doesn′t work  ⇒p^n_2  =7×p^0 +40=47 (47 is prime)  ⇒p=47, n_1 =0, n_2 =1, n=1  Ans. p_(max) =p=47 and   7x^2 −44x+12=  =7×7^2 −44×7 +12= 47^1 =p^n
7x244x+12=(x6)(7x2)=pnx6=pn1and7x2=pn2andn1+n2=nx=pn1+6and7pn1+40=pn2n1<n27+40pn1isawholenumberpn1isadivisorof40=23×51×(somnum)0(p,n1)=(p,0),(5,1),(2,3)Nowwetryp=5or2anditdoesntworkpn2=7×p0+40=47(47isprime)p=47,n1=0,n2=1,n=1Ans.pmax=p=47and7x244x+12==7×7244×7+12=471=pn
Commented by Tinkutara last updated on 16/Sep/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *