Menu Close

Suppose-are-real-numbers-such-that-7-7-7-7-0-Prove-that-0-




Question Number 61273 by alphaprime last updated on 31/May/19
Suppose α ,β,γ,δ are real numbers  such that α+β+γ+δ = α^7 +β^7 +γ^7 +δ^7 =0  Prove that α(α+β)(α+γ)(α+δ)=0
Supposeα,β,γ,δarerealnumberssuchthatα+β+γ+δ=α7+β7+γ7+δ7=0Provethatα(α+β)(α+γ)(α+δ)=0
Commented by Rasheed.Sindhi last updated on 31/May/19
   α+β+γ+δ = α^7 +β^7 +γ^7 +δ^7 =0  It can be proved that any two of  four have same value and remaining  two are additive inverse of the mentioned  two numbers(Only possibility)  So  Let  α=β=k ,γ=δ=−k     α+β+γ+δ = α^7 +β^7 +γ^7 +δ^7 =0         ⇒ k+k−k−k=k^7 +k^7 −k^7 −k^7 =0   α(α+β)(α+γ)(α+δ)        =k(k+k)(k−k)(k−)         =k.2k.0.0=0        Proved
α+β+γ+δ=α7+β7+γ7+δ7=0Itcanbeprovedthatanytwooffourhavesamevalueandremainingtwoareadditiveinverseofthementionedtwonumbers(Onlypossibility)SoLetα=β=k,γ=δ=kα+β+γ+δ=α7+β7+γ7+δ7=0k+kkk=k7+k7k7k7=0α(α+β)(α+γ)(α+δ)=k(k+k)(kk)(k)=k.2k.0.0=0Proved
Commented by alphaprime last updated on 01/Jun/19
Could it have been better please?!
Answered by Rasheed.Sindhi last updated on 02/Jun/19
α+β+γ+δ = 0 ..............(i)               ∧  α^7 +β^7 +γ^7 +δ^7 =0............(ii)  (i)⇒α=−(β+γ+δ)  (ii)⇒{−(β+γ+δ)}^7 +β^7 +γ^7 +δ^7 =0  −(β+γ+δ)^7 =−(β^7 +γ^7 +δ^7 )     (β+γ+δ)^7 =β^7 +γ^7 +δ^7   possible  solutions:     {β,γ,δ}={0,0,0}⇒α=0  {α,β,γ,δ}={0,0,0,0}     For β=k≠0      {β,γ,δ}={k,0,0}⇒α=−(k+0+0)=−k  {α,β,γ,δ}={k,−k,0,0}  (This means all the possible combinations  of   k,−k,0,0)        (m+n−n)^7 =m^7 +n^7 +(−n)^7   ^• When {α,β,γ,δ}={0,0,0,0}    α(α+β)(α+γ)(α+δ)      =0(0+0)(0+0)(0+0)=0  ^• When   {α,β,γ,δ}={k,−k,0,0}    α(α+β)(α+γ)(α+γ)         =k(k−k)(k+0)(k+0)=0  Note:Different combinations of   k,−k,0,0 haave no effect on  the result of the above expression.          Hence proved
α+β+γ+δ=0..(i)α7+β7+γ7+δ7=0(ii)(i)α=(β+γ+δ)(ii){(β+γ+δ)}7+β7+γ7+δ7=0(β+γ+δ)7=(β7+γ7+δ7)(β+γ+δ)7=β7+γ7+δ7possiblesolutions:{β,γ,δ}={0,0,0}α=0{α,β,γ,δ}={0,0,0,0}Forβ=k0{β,γ,δ}={k,0,0}α=(k+0+0)=k{α,β,γ,δ}={k,k,0,0}(Thismeansallthepossiblecombinationsofk,k,0,0)(m+nn)7=m7+n7+(n)7When{α,β,γ,δ}={0,0,0,0}α(α+β)(α+γ)(α+δ)=0(0+0)(0+0)(0+0)=0When{α,β,γ,δ}={k,k,0,0}α(α+β)(α+γ)(α+γ)=k(kk)(k+0)(k+0)=0Note:Differentcombinationsofk,k,0,0haavenoeffectontheresultoftheaboveexpression.Henceproved
Commented by alphaprime last updated on 02/Jun/19
Thank you gentlemen :)
Commented by Rasheed.Sindhi last updated on 02/Jun/19
Thanks but the answer is not  satisfactory yet! Because It doesn′t  covers all the possibilities.  For example α=a≠0 , β=b≠0,  γ=−a & δ=−b.   α+β+γ+δ=0⇒a+b−a−b=0  α^7 +β^7 +γ^7 +δ^7 =0            ⇒a^7 +b^7 +(−a)^7 +(−b)^7                  =a^7 +b^7 −a^7 −b^7 =0    α(α+β)(α+γ)(α+δ)      =a(a+b)(a−a)(a−b)=0  How the  solution set:        {α,β,γ,δ}={a,b,−a,−b}  can be derived from        (β+γ+δ)^7 =β^7 +γ^7 +δ^7   ?  I think {α,β,γ,δ}={a,b,−a,−b}  where a,b∈R (a,b may be zero also)  is complete solution.
Thanksbuttheanswerisnotsatisfactoryyet!BecauseItdoesntcoversallthepossibilities.Forexampleα=a0,β=b0,γ=a&δ=b.α+β+γ+δ=0a+bab=0α7+β7+γ7+δ7=0a7+b7+(a)7+(b)7=a7+b7a7b7=0α(α+β)(α+γ)(α+δ)=a(a+b)(aa)(ab)=0Howthesolutionset:{α,β,γ,δ}={a,b,a,b}canbederivedfrom(β+γ+δ)7=β7+γ7+δ7?Ithink{α,β,γ,δ}={a,b,a,b}wherea,bR(a,bmaybezeroalso)iscompletesolution.
Answered by Rasheed.Sindhi last updated on 03/Jun/19
α+β+γ+δ =0.............(i)            ∧  α^7 +β^7 +γ^7 +δ^7 =0..........(ii)  ⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢^(−)   Let α=a , β=b where a,b∈R  (i)⇒γ+δ=−a−b.............(iii)  (ii)⇒γ^7 +δ^7 =−a^7 −b^7 .......(iv)  (iii) & (iv) have only two real solutions  (See the answer & comments of sir   MJS to Q#61470) and they are            γ=−a ∧ δ=−b                       OR           γ=−b ∧ δ=−a  Hence the general solution to  α+β+γ+δ = α^7 +β^7 +γ^7 +δ^7 =0  is {α,β,γ,δ}={a,b,−a,−b} for real  α,β,γ,δ.     To prove α(α+β)(α+γ)(α+δ)=0     α(α+β)(α+γ)(α+δ)       =a(a+b)(a−a)(a−b)       =a(a+b)(0)(a−b)=0
α+β+γ+δ=0.(i)α7+β7+γ7+δ7=0.(ii)⌣⌢⌣⌢⌣⌢⌣⌢⌣⌢Letα=a,β=bwherea,bR(i)γ+δ=ab.(iii)(ii)γ7+δ7=a7b7.(iv)(iii)&(iv)haveonlytworealsolutions(Seetheanswer&commentsofsirYou can't use 'macro parameter character #' in math modeγ=aδ=bORγ=bδ=aHencethegeneralsolutiontoα+β+γ+δ=α7+β7+γ7+δ7=0is{α,β,γ,δ}={a,b,a,b}forrealα,β,γ,δ.Toproveα(α+β)(α+γ)(α+δ)=0α(α+β)(α+γ)(α+δ)=a(a+b)(aa)(ab)=a(a+b)(0)(ab)=0

Leave a Reply

Your email address will not be published. Required fields are marked *