Menu Close

Suppose-that-f-and-g-are-two-functions-such-that-lim-x-a-g-x-0-and-lim-x-a-f-x-g-x-exist-Prove-that-lim-x-a-f-x-0-




Question Number 42933 by Joel578 last updated on 05/Sep/18
Suppose that f and g are two functions such that  lim_(x→a)  g(x) = 0    and    lim_(x→a)  ((f(x))/(g(x)))   exist.  Prove that lim_(x→a)  f(x) = 0
$$\mathrm{Suppose}\:\mathrm{that}\:{f}\:\mathrm{and}\:{g}\:\mathrm{are}\:\mathrm{two}\:\mathrm{functions}\:\mathrm{such}\:\mathrm{that} \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{g}\left({x}\right)\:=\:\mathrm{0}\:\:\:\:\mathrm{and}\:\:\:\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\frac{{f}\left({x}\right)}{{g}\left({x}\right)}\:\:\:\mathrm{exist}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{f}\left({x}\right)\:=\:\mathrm{0} \\ $$
Commented by MrW3 last updated on 05/Sep/18
h(x)=((f(x))/(g(x)))  ⇒f(x)=h(x)g(x)  lim_(x→a)  f(x)=lim_(x→a)  h(x)×lim_(x→a)  g(x)=b×0=0
$${h}\left({x}\right)=\frac{{f}\left({x}\right)}{{g}\left({x}\right)} \\ $$$$\Rightarrow{f}\left({x}\right)={h}\left({x}\right){g}\left({x}\right) \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{f}\left({x}\right)=\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{h}\left({x}\right)×\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{g}\left({x}\right)={b}×\mathrm{0}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *