Menu Close

Suppose-that-R-gt-0-x-0-gt-0-and-x-n-1-1-2-R-x-n-x-n-n-0-Prove-For-n-1-x-n-gt-x-n-1-gt-R-and-x-n-R-1-2-n-x-0-R-2-x-0-




Question Number 120037 by floor(10²Eta[1]) last updated on 28/Oct/20
Suppose that R>0, x_0 >0, and  x_(n+1) =(1/2)((R/x_n )+x_n ), n≥0  Prove: For n≥1, x_n >x_(n+1) >(√R) and  x_n −(√R)≤(1/2^n ) (((x_0 −(√R))^2 )/x_0 )
SupposethatR>0,x0>0,andxn+1=12(Rxn+xn),n0Prove:Forn1,xn>xn+1>RandxnR12n(x0R)2x0
Answered by floor(10²Eta[1]) last updated on 29/Oct/20
2x_(n+1) x_n =R+x_n ^2   2x_(n+1) x_n −2(√R)x_n =(x_n −(√R))^2 ≥0  2x_(n+1) x_n −2(√R)x_n ≥0  x_(n+1) ≥(√R)  ⇒x_(n+1) >(√R)  x_n ^2 −2x_(n+1) x_n +R=0  x_n =x_(n+1) ±(√(x_(n+1) ^2 −R))>(√R)  suppose that x_n <x_(n+1)   x_n <(1/2)((R/x_n )+x_n )  2x_n ^2 <R+x_n ^2 ⇒x_n <(√R) (imp.)  ⇒x_n >x_(n+1) >(√R)  2x_(n+1) x_n −2(√R)x_n =(x_n −(√R))^2   2(x_n −(√R))>2(x_(n+1) −(√R))=(((x_n −(√R))^2 )/x_n )  x_n −(√R)>(((x_n −(√R))^2 )/(2x_n ))<(((x_0 −(√R))^2 )/(2x_0 ))  (i):x_n −(√R)≥(((x_0 −(√R))^2 )/(2x_0 ))  x_0 −(√R)>x_n −(√R)≥(((x_0 −(√R))^2 )/(2x_0 ))  2x_0 ^2 −2(√R)x_0 >x_0 ^2 −2(√R)x_0 +R  x_0 ^2 >R⇒x_0 >(√R)  (ii):  x_n −(√R)≤(((x_0 −(√R))^2 )/(2x_0 ))  x_0 −(√R)<(((x_0 −(√R))^2 )/(2x_0 ))  x_0 <−(√R)  ⇒x_n −(√R)≥(((x_0 −(√R))^2 )/(2x_0 ))≥(((x_0 −(√R))^2 )/(2^n x_0 ))
2xn+1xn=R+xn22xn+1xn2Rxn=(xnR)202xn+1xn2Rxn0xn+1Rxn+1>Rxn22xn+1xn+R=0xn=xn+1±xn+12R>Rsupposethatxn<xn+1xn<12(Rxn+xn)2xn2<R+xn2xn<R(imp.)xn>xn+1>R2xn+1xn2Rxn=(xnR)22(xnR)>2(xn+1R)=(xnR)2xnxnR>(xnR)22xn<(x0R)22x0(i):xnR(x0R)22x0x0R>xnR(x0R)22x02x022Rx0>x022Rx0+Rx02>Rx0>R(ii):xnR(x0R)22x0x0R<(x0R)22x0x0<RxnR(x0R)22x0(x0R)22nx0

Leave a Reply

Your email address will not be published. Required fields are marked *