Menu Close

Suppose-that-the-point-M-lying-in-the-interior-of-the-parallelogram-ABCD-two-parallels-to-AB-and-AD-are-drawn-intersecting-the-sides-of-ABCD-at-the-points-P-Q-R-S-See-Figure-Prove-that-M-lies-




Question Number 17645 by Tinkutara last updated on 09/Jul/17
Suppose that the point M lying in the  interior of the parallelogram ABCD,  two parallels to AB and AD are drawn,  intersecting the sides of ABCD at the  points P, Q, R, S (See Figure). Prove  that M lies on the diagonal AC if and  only if [MRDS] = [MPBQ].
$$\mathrm{Suppose}\:\mathrm{that}\:\mathrm{the}\:\mathrm{point}\:{M}\:\mathrm{lying}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{interior}\:\mathrm{of}\:\mathrm{the}\:\mathrm{parallelogram}\:{ABCD}, \\ $$$$\mathrm{two}\:\mathrm{parallels}\:\mathrm{to}\:{AB}\:\mathrm{and}\:{AD}\:\mathrm{are}\:\mathrm{drawn}, \\ $$$$\mathrm{intersecting}\:\mathrm{the}\:\mathrm{sides}\:\mathrm{of}\:{ABCD}\:\mathrm{at}\:\mathrm{the} \\ $$$$\mathrm{points}\:{P},\:{Q},\:{R},\:{S}\:\left(\mathrm{See}\:\mathrm{Figure}\right).\:\mathrm{Prove} \\ $$$$\mathrm{that}\:{M}\:\mathrm{lies}\:\mathrm{on}\:\mathrm{the}\:\mathrm{diagonal}\:{AC}\:\mathrm{if}\:\mathrm{and} \\ $$$$\mathrm{only}\:\mathrm{if}\:\left[{MRDS}\right]\:=\:\left[{MPBQ}\right]. \\ $$
Commented by Tinkutara last updated on 09/Jul/17
Answered by alex041103 last updated on 09/Jul/17
FG∥BC∥AD and EH∥AB∥CD  ⇒AGME and MHCF are parallelograms  ⇒S_(AMG) =S_(AME)  and S_(MCH) =S_(MCF)   Also ABCD is parallelogram  ⇒S_(ACD) =S_(ACB)   S_(ACD) =S_(AMC) +S_(DEMF) +S_(AME) +S_(CFM)   and  S_(ACB) =S_(AMG) +S_(BHMG) +S_(CHM) −S_(AMC)   But S_(AMG) =S_(AME)  and S_(MCH) =S_(MCF)   and S_(ACD) =S_(ACB)   ⇒S_(BHMG) =S_(DEMF) +2S_(AMC)    If S_(BHMG) =S_(DEMF)  then S_(AMC) =0  ⇒S_(AMC) =((distance(M to AC)×AC)/2)=0  And AC≠0 then distance(M to AC)=0  ⇒M∈AC
$${FG}\parallel{BC}\parallel{AD}\:{and}\:{EH}\parallel{AB}\parallel{CD} \\ $$$$\Rightarrow{AGME}\:{and}\:{MHCF}\:{are}\:{parallelograms} \\ $$$$\Rightarrow{S}_{{AMG}} ={S}_{{AME}} \:{and}\:{S}_{{MCH}} ={S}_{{MCF}} \\ $$$${Also}\:{ABCD}\:{is}\:{parallelogram} \\ $$$$\Rightarrow{S}_{{ACD}} ={S}_{{ACB}} \\ $$$${S}_{{ACD}} ={S}_{{AMC}} +{S}_{{DEMF}} +{S}_{{AME}} +{S}_{{CFM}} \\ $$$${and} \\ $$$${S}_{{ACB}} ={S}_{{AMG}} +{S}_{{BHMG}} +{S}_{{CHM}} −{S}_{{AMC}} \\ $$$${But}\:{S}_{{AMG}} ={S}_{{AME}} \:{and}\:{S}_{{MCH}} ={S}_{{MCF}} \\ $$$${and}\:{S}_{{ACD}} ={S}_{{ACB}} \\ $$$$\Rightarrow{S}_{{BHMG}} ={S}_{{DEMF}} +\mathrm{2}{S}_{{AMC}} \\ $$$$\:{If}\:{S}_{{BHMG}} ={S}_{{DEMF}} \:{then}\:{S}_{{AMC}} =\mathrm{0} \\ $$$$\Rightarrow{S}_{{AMC}} =\frac{{distance}\left({M}\:{to}\:{AC}\right)×{AC}}{\mathrm{2}}=\mathrm{0} \\ $$$${And}\:{AC}\neq\mathrm{0}\:{then}\:{distance}\left({M}\:{to}\:{AC}\right)=\mathrm{0} \\ $$$$\Rightarrow{M}\in{AC} \\ $$
Commented by alex041103 last updated on 09/Jul/17
Commented by Tinkutara last updated on 09/Jul/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$
Answered by ajfour last updated on 09/Jul/17
Commented by ajfour last updated on 09/Jul/17
Area MRDS=ka^� ×(b^� −mb^� )                            =k(1−m)a^� ×b^�   Area MPBQ=(a^� −ka^� )×mb^�                             =m(1−k)a^� ×b^�    position vector of M :                        r_M ^� = ka^� +mb^�   when the two areas are equal,         k(1−m)=m(1−k)    ⇒         k=m       then    r_M ^� = k(a^� +b^� )     ⇒     M is on AC  then.
$$\mathrm{Area}\:\mathrm{MRDS}=\mathrm{k}\bar {\mathrm{a}}×\left(\bar {\mathrm{b}}−\mathrm{m}\bar {\mathrm{b}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{k}\left(\mathrm{1}−\mathrm{m}\right)\bar {\mathrm{a}}×\bar {\mathrm{b}} \\ $$$$\mathrm{Area}\:\mathrm{MPBQ}=\left(\bar {\mathrm{a}}−\mathrm{k}\bar {\mathrm{a}}\right)×\mathrm{m}\bar {\mathrm{b}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{m}\left(\mathrm{1}−\mathrm{k}\right)\bar {\mathrm{a}}×\bar {\mathrm{b}} \\ $$$$\:\mathrm{position}\:\mathrm{vector}\:\mathrm{of}\:\mathrm{M}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\bar {\mathrm{r}}_{\mathrm{M}} =\:\mathrm{k}\bar {\mathrm{a}}+\mathrm{m}\bar {\mathrm{b}} \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{two}\:\mathrm{areas}\:\mathrm{are}\:\mathrm{equal}, \\ $$$$\:\:\:\:\:\:\:\mathrm{k}\left(\mathrm{1}−\mathrm{m}\right)=\mathrm{m}\left(\mathrm{1}−\mathrm{k}\right) \\ $$$$\:\:\Rightarrow\:\:\:\:\:\:\:\:\:\mathrm{k}=\mathrm{m}\: \\ $$$$\:\:\:\:\mathrm{then}\:\:\:\:\bar {\mathrm{r}}_{\mathrm{M}} =\:\mathrm{k}\left(\bar {\mathrm{a}}+\bar {\mathrm{b}}\right)\:\:\: \\ $$$$\Rightarrow\:\:\:\:\:\mathrm{M}\:\mathrm{is}\:\mathrm{on}\:\mathrm{AC}\:\:\mathrm{then}. \\ $$
Commented by Tinkutara last updated on 09/Jul/17
Thanks Sir!
$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *