Question Number 184555 by Shrinava last updated on 08/Jan/23
$$\mathrm{Suppose}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:\mathrm{of} \\ $$$$\mathrm{complex}\:\mathrm{numbers}\:\:\boldsymbol{\mathrm{x}}\:\mathrm{or}\:\boldsymbol{\mathrm{y}}\:\mathrm{is}\:\mathrm{7}\:,\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{their}\:\mathrm{cubes}\:\mathrm{is}\:\mathrm{10}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{largest} \\ $$$$\mathrm{true}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sum}\:\:\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\:\:\mathrm{that}\:\mathrm{satisfies} \\ $$$$\mathrm{these}\:\mathrm{conditions}. \\ $$$$\left.\mathrm{A}\left.\right)\left.\mathrm{4}\left.\:\left.\:\:\mathrm{B}\right)\mathrm{5}\:\:\:\mathrm{C}\right)\mathrm{6}\:\:\:\mathrm{D}\right)\mathrm{7}\:\:\:\mathrm{E}\right)\mathrm{8} \\ $$
Commented by mr W last updated on 08/Jan/23
$${what}\:{is}\:{meant}\:{with}\:“{true}\:{value}''? \\ $$
Commented by Shrinava last updated on 08/Jan/23
$$\mathrm{dear}\:\mathrm{professor},\:\mathrm{real}\:\mathrm{price} \\ $$
Commented by mr W last updated on 08/Jan/23
$${what}\:{is}\:{then}\:{meant}\:{with}\:“{real}\:{price}''? \\ $$$${if}\:{you}\:{translate}\:{from}\:{your}\:{native} \\ $$$${language},\:{please}\:{give}\:{at}\:{best}\:{an}\: \\ $$$${example}\:{showing}\:{what}\:{is}\:{concretely} \\ $$$${meant}.\:{e}.{g}.\:{what}\:{is}\:{the}\:“{real}\:{price}''\: \\ $$$${from}\:{the}\:{number}\:\mathrm{2}+\mathrm{3}{i}\:? \\ $$
Commented by mr W last updated on 08/Jan/23
$${i}\:{guess}\:{you}\:{mean}\:{the}\:{absolute}\:{value} \\ $$$${of}\:{a}\:{complex}\:{number}. \\ $$
Commented by JDamian last updated on 08/Jan/23
I think this kind of misunderstanding can be avoided by using more expressions in math language instead of long translated clauses from native languages
Commented by Shrinava last updated on 08/Jan/23
$$\mathrm{yes}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{mrW} \\ $$
Answered by Frix last updated on 08/Jan/23
$$\mathrm{We}\:\mathrm{must}\:\mathrm{solve}\:\mathrm{in}\:\mathbb{C} \\ $$$$\left(\mathrm{1}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{7}\:\Rightarrow\:{y}=\pm\sqrt{\mathrm{7}−{x}^{\mathrm{2}} } \\ $$$$\left(\mathrm{2}\right)\:{x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\mathrm{10}\:\Leftrightarrow\:{x}^{\mathrm{3}} \pm\left(\mathrm{7}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\mathrm{10}\:\Rightarrow \\ $$$$\pm\left(\mathrm{7}−{x}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} =\mathrm{10}−{x}^{\mathrm{3}} \\ $$$$\mathrm{Squaring}\:\left[\mathrm{might}\:\mathrm{introduce}\:\mathrm{false}\:\mathrm{solutions}\right] \\ $$$$\mathrm{and}\:\mathrm{transforming}\:\Rightarrow \\ $$$${x}^{\mathrm{6}} −\frac{\mathrm{21}{x}^{\mathrm{4}} }{\mathrm{2}}−\mathrm{10}{x}^{\mathrm{3}} +\frac{\mathrm{147}{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{\mathrm{243}}{\mathrm{2}}=\mathrm{0} \\ $$$$\mathrm{I}\:\mathrm{used}\:\mathrm{software}\:\mathrm{to}\:\mathrm{find} \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{13}}}{\mathrm{2}}\vee{x}=−\frac{\mathrm{5}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\mathrm{i}\vee{x}=\mathrm{2}\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{Testing}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{these}\:\mathrm{pairs}: \\ $$$${x}=\frac{\mathrm{1}\pm\sqrt{\mathrm{13}}}{\mathrm{2}}\wedge{y}=\frac{\mathrm{1}\mp\sqrt{\mathrm{13}}}{\mathrm{2}} \\ $$$${x}=−\frac{\mathrm{5}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\mathrm{i}\wedge{y}=−\frac{\mathrm{5}}{\mathrm{2}}\mp\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\mathrm{i} \\ $$$${x}=\mathrm{2}\pm\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i}\wedge{y}=\mathrm{2}\mp\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\mathrm{i} \\ $$$$\Rightarrow \\ $$$${x}+{y}\in\left\{−\mathrm{5},\:\mathrm{1},\:\mathrm{4}\right\} \\ $$
Answered by Frix last updated on 08/Jan/23
$$\mathrm{Much}\:\mathrm{easier}\:\mathrm{to}\:\mathrm{solve}: \\ $$$${x}={u}−{v} \\ $$$${y}={u}+{v} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{1}\right)\:\mathrm{2}{u}^{\mathrm{2}} +\mathrm{2}{v}^{\mathrm{2}} =\mathrm{7}\:\Rightarrow\:{v}^{\mathrm{2}} =\frac{\mathrm{7}}{\mathrm{2}}−{u}^{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2}{u}^{\mathrm{3}} +\mathrm{6}{uv}^{\mathrm{2}} =\mathrm{10}\:\Rightarrow\:{v}^{\mathrm{2}} =\frac{\mathrm{5}−{u}^{\mathrm{3}} }{\mathrm{3}{u}} \\ $$$$\Rightarrow \\ $$$$\frac{\mathrm{7}}{\mathrm{2}}−{u}^{\mathrm{2}} =\frac{\mathrm{5}−{u}^{\mathrm{3}} }{\mathrm{3}{u}} \\ $$$$\Leftrightarrow \\ $$$${u}^{\mathrm{3}} −\frac{\mathrm{21}{u}}{\mathrm{4}}+\frac{\mathrm{5}}{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow\:{u}=−\frac{\mathrm{5}}{\mathrm{2}}\vee{u}=\frac{\mathrm{1}}{\mathrm{2}}\vee{u}=\mathrm{2} \\ $$$$\mathrm{We}\:\mathrm{don}'\mathrm{t}\:\mathrm{even}\:\mathrm{need}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:{v}\:\mathrm{because} \\ $$$${x}+{y}=\mathrm{2}{u}\in\left\{−\mathrm{5},\:\mathrm{1},\:\mathrm{4}\right\} \\ $$
Answered by mr W last updated on 08/Jan/23
$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{7} \\ $$$$\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{2}{xy}=\mathrm{7}\:\Rightarrow{xy}=\frac{\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{7}}{\mathrm{2}} \\ $$$${x}^{\mathrm{3}} +{y}^{\mathrm{3}} =\left({x}+{y}\right)\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} −{xy}\right)=\mathrm{10} \\ $$$$\left({x}+{y}\right)\left(\mathrm{7}−\frac{\left({x}+{y}\right)^{\mathrm{2}} −\mathrm{7}}{\mathrm{2}}\right)=\mathrm{10} \\ $$$$\left({x}+{y}\right)^{\mathrm{3}} −\mathrm{21}\left({x}+{y}\right)+\mathrm{20}=\mathrm{0} \\ $$$$\left({x}+{y}−\mathrm{1}\right)\left({x}+{y}−\mathrm{4}\right)\left({x}+{y}+\mathrm{5}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}+{y}=\mathrm{1}\:{or}\:\mathrm{4}\:{or}\:−\mathrm{5} \\ $$$$\mid{x}+{y}\mid=\mathrm{1}\:{or}\:\mathrm{4}\:{or}\:\mathrm{5} \\ $$$$\mid{x}+{y}\mid_{{max}} =\mathrm{5} \\ $$$$\Rightarrow{answer}\:\left({B}\right) \\ $$
Commented by Shrinava last updated on 09/Jan/23
$$\mathrm{perfect}\:\mathrm{dear}\:\mathrm{professor},\:\mathrm{thank}\:\mathrm{you} \\ $$
Commented by mr W last updated on 09/Jan/23
$${you}\:{should}\:{also}\:{thank}\:{other}\:{people}\: \\ $$$${who}\:{solved}\:{your}\:{question}\:{even}\:{before}\: \\ $$$${me}\:! \\ $$