Menu Close

Suppose-that-you-wish-to-fabricate-a-uniform-wire-out-of-1-gram-of-copper-If-the-wire-is-to-have-a-resistance-of-R-0-5-and-all-of-the-copper-is-to-be-used-What-will-be-i-the-length-and-ii-the-diamet




Question Number 41443 by Necxx last updated on 07/Aug/18
Suppose that you wish to fabricate  a uniform wire out of 1 gram of  copper.If the wire is to have a  resistance of R=0.5Ω,and all of  the copper is to be used.What will  be(i)the length and (ii)the diameter  of the wire.
$${Suppose}\:{that}\:{you}\:{wish}\:{to}\:{fabricate} \\ $$$${a}\:{uniform}\:{wire}\:{out}\:{of}\:\mathrm{1}\:{gram}\:{of} \\ $$$${copper}.{If}\:{the}\:{wire}\:{is}\:{to}\:{have}\:{a} \\ $$$${resistance}\:{of}\:{R}=\mathrm{0}.\mathrm{5}\Omega,{and}\:{all}\:{of} \\ $$$${the}\:{copper}\:{is}\:{to}\:{be}\:{used}.{What}\:{will} \\ $$$${be}\left({i}\right){the}\:{length}\:{and}\:\left({ii}\right){the}\:{diameter} \\ $$$${of}\:{the}\:{wire}. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Aug/18
m=Πr^2 ld    r=radius of wire                           l=length of wire                           d=density of wire                           ρ=resistivity of wire                           R=resistance of wire                           m=mass of wire  R=((ρl)/(Πr^2 ))  m.R=d.ρ.l^2   l=(√((m.R)/(d.ρ)))    r^2 =(m/(Πld))    r^2 =(m/(Πd.))×(√((d.ρ)/(m.R))) =(1/Π).(√((m.ρ)/(d.R)))   r=(1/( (√Π)))×(((m.ρ)/(d.R)))^(1/4)   dia=(2/( (√Π)))×(((m.ρ)/(d.R)))^(1/4)
$${m}=\Pi{r}^{\mathrm{2}} {ld}\:\:\:\:{r}={radius}\:{of}\:{wire} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{l}={length}\:{of}\:{wire} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{d}={density}\:{of}\:{wire} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\rho={resistivity}\:{of}\:{wire} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{R}={resistance}\:{of}\:{wire} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}={mass}\:{of}\:{wire} \\ $$$${R}=\frac{\rho{l}}{\Pi{r}^{\mathrm{2}} } \\ $$$${m}.{R}={d}.\rho.{l}^{\mathrm{2}} \\ $$$${l}=\sqrt{\frac{{m}.{R}}{{d}.\rho}}\:\: \\ $$$${r}^{\mathrm{2}} =\frac{{m}}{\Pi{ld}} \\ $$$$\:\:{r}^{\mathrm{2}} =\frac{{m}}{\Pi{d}.}×\sqrt{\frac{{d}.\rho}{{m}.{R}}}\:=\frac{\mathrm{1}}{\Pi}.\sqrt{\frac{{m}.\rho}{{d}.{R}}}\: \\ $$$${r}=\frac{\mathrm{1}}{\:\sqrt{\Pi}}×\left(\frac{{m}.\rho}{{d}.{R}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$$${dia}=\frac{\mathrm{2}}{\:\sqrt{\Pi}}×\left(\frac{{m}.\rho}{{d}.{R}}\right)^{\frac{\mathrm{1}}{\mathrm{4}}} \\ $$
Commented by Necxx last updated on 07/Aug/18
yeah....Thanks
$${yeah}….{Thanks} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *